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Abstract—Transfer learning is seen as one of the most promis-
ing areas of machine learning. Lately, features from pre-trained
models have been used to achieve state-of-the-art results in sev-
eral machine vision problems. Those models are usually employed
when the problem of interest does not have enough supervised
examples to support the network training from scratch. Most
applications use networks pre-trained on noise-free RGB image
datasets, what is observed even when the target domain counts
on grayscale images or when data is degraded by noise. In this
paper, we evaluate the use of Convolutional Neural Networks
(CNNs) on such transfer learning scenarios and the impact of
using RGB trained networks on grayscale image tasks. Our
results confirm that the use of networks trained using colored
images on grayscale tasks hinders the overall performance when
compared to a similar network trained on a quantized version of
the original dataset. Results also show that higher quantization
levels (resulting in less colors) increase the robustness of CNN
features in the presence of noise.

I. INTRODUCTION

Deep Learning has become very popular along the last
years, especially in the context of computer vision appli-
cations [1]. Convolutional Neural Networks (CNNs) have
achieved great performance in several complex machine vision
applications (e.g. image classification and object recogni-
tion) [2]. Nevertheless, the training of such models requires
large quantities of labeled data, which might not be available
in some scenarios [3]. In that context, transfer learning has
been used to address such issue by taking advantage of using
models trained on other domains, which are either useful as
starting point for training or to support feature extraction [4].

Lately, pre-trained networks were even employed in do-
mains with low-quality images, such as surveillance videos [5]
and heavily compressed images [6], performing significantly
well. However, those studies do not investigate the effects
of using CNNs trained on RGB domains to extract features
from grayscale/noisy images. Recent studies pointed out that
changes in image quality can hamper the performance of pre-
trained models [7], [8], but no mention to the use of RGB-
based networks on grayscale domains is given. Motivated
by this gap, we designed an experimental setup to test the
following hypothesis:

Any opinions, findings, and conclusions expressed in this manuscript are
those of the authors and do not necessarily reflect the views, official policy
or position of the Itaú-Unibanco, FAPESP and CNPq.

1) Instead of applying transfer learning using some RGB
model on a grayscale dataset – given data is not enough
to proceed with the CNN trainining from scratch – it is
better to train a new model using a grayscale version of
the original set;

2) CNN features learned from grayscale images with a
reduced number of possible colors are more robust to
noise.

Our experimental analysis shows that changing the quantiza-
tion level of images decreases the performance of a model even
in the same dataset that it was trained beforehand. Moreover,
models trained in grayscale versions of datasets seem to be
better suited to serve as feature extractors/transfer learning for
other grayscale datasets. Finally, the results also show that
models trained in quantized datasets are more robust to noise.

II. RELATED WORK

Due to the performance achieved in transfer learning scenar-
ios [4], pre-trained CNNs became a very appealing resource
when dealing with applications where labeled data is not
widely available for training. Such CNNs are usually trained
on noise-free RGB-image datasets (e.g. ImageNet [9] and
CIFAR-10 [10]). In spite of being trained using good-quality
images, those networks tend to perform well even when
applied to grayscale [5] or noisy [2] domains. On the other
hand, recent studies have shown that changes in image quality
can affect image classification results [7], [8].

Dodge and Karam [7] showed that several state-of-the-art
CNNs, such as VGG [11], lack in terms of resilience to certain
types of changes, such as: blur, noise, contrast and image
compression. This particular study considers the entire model
(convolutional and dense layers) and it was conducted using
models trained on the original dataset to classify distorted
versions of the test set (same domain).

In [8], the robustness of several CNN architectures was
assessed with regards to Gaussian and salt & pepper noise.
This study pointed out that training networks with noisy
images makes them more robust even to other types of noise.
Nonetheless, all their experiments were conducted within the
same dataset, that is, transfer learning scenarios were not
considered.



This kind of resilience is also studied regarding hand-crafted
features. For instance, [12] investigated the stability of some
LBP [13] variants to noise, while [14] performed experiments
to evaluate the robustness of LBP and HOG [15] descriptors
to noise.

Differently from the aforementioned studies, we devoted our
efforts to study the effects of using models trained in a certain
dataset – composed only of RGB images – as classifiers or
feature extractors for other datasets with quantized grayscale
images or noisy images. Hence, we focus on the analysis of the
transfer learning capabilities of the learned features, instead of
studying them within the same dataset.

III. EXPERIMENTAL SETUP

In order to test our hypotheses, we designed a experimental
setup composed of three scenarios. In the first experiment,
we trained 21 different models using the CIFAR-10 dataset,
as follows:
• We selected three architectures (Simple CNN, Base

Model CNN and ResNet-20) and trained 7 different
models for each architecture;

• Each of the seven models based on a certain architecture
was trained using a different version of the CIFAR-10
dataset. The first model was trained using the original
(RGB) training set, while the others used grayscale ver-
sions of the training set with 256, 128, 64, 32, 16 and 8
gray levels (quantization), respectively.

The trained models were then used to evaluate every version
(RGB and quantized) of the CIFAR-10 test set. With this
baseline experiment, we aim at establishing how dependent
a model is to the color configuration of its training set.

In the second experiment, we analyzed the robustness of
the CNNs features – learned by the 21 models trained during
the first experiment – with regards to color quantization in
transfer learning scenarios. In order to do so, we used four
datasets: CIFAR-10, CIFAR-100 fine, CIFAR-100 coarse and
Fashion-MNIST. In our setup, we took every pair (dataset,
CNN architecture) and proceeded as follows:
• Similar to what was performed during the first exper-

iment, we created seven versions of each dataset: one
RGB and six grayscale versions with 256, 128, 64, 32,
16 and 8 colors;

• Each trained model was used to extract features for every
version of every dataset, resulting in 49 different feature
sets for each dataset (196 features sets in total);

• For each feature set, we trained a logistic regression
classifier1 on the training set and evaluated it on the test
set.

Figure 1 illustrates the pipeline used in the second experi-
ment, which allows us to have a better understanding of the
robustness of features as the quantization changes, this when

1We employed the SGDClassifier with log loss from
scikit-learn. This is equivalent to training a logistic regression
using stochastic gradient descent (http://scikit-learn.org/
stable/modules/generated/sklearn.linear_model.
SGDClassifier.html).

compared to the first experiment. This is due to the fact that –
by using the original CNN as feature extractor (convolutional
part) and replacing the classifier (dense part) – we are directly
evaluating the generated feature space.
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Fig. 1. Diagram illustrating the pipeline used in the second experiment.
For each pair (dataset version, feature extraction CNN), a different logistic
regression model is learned from the training set. Then, this classification
model is assessed using a test set with the same quantization employed in
training.

Finally, the third experiment uses the same models trained
during the first experiment, however to investigate the robust-
ness the learned features have in noisy scenarios. To this end,
we employed the 21 models obtained from experiment one
to extract features from the original Fashion-MNIST training
set (grayscale images with 256 possible colors). Next, like
in experiment two, we trained one logistic regression for each
feature set version. These logistic regression models were then
evaluated on three noisy versions of the Fashion-MNIST test
set, affected by Gaussian noise with standard deviations equal
to 10, 20 and 30, respectively. Thus, differently from experi-
ment two, in this experiment the original Fashion-MNIST test
set is always used (grayscale images with 256 possible colors),
only changing the noise level. Also, it is important to notice
that the Gaussian noise is only applied to the test set and that
the only difference between the learned classification models
comes from the feature space learned by the CNNs due to
the different color schemes on their training sets (CIFAR-10:
RGB and quantizatized to 256, 128, 64, 32, 16 and 8 gray
levels).

In a nutshell, experiments one and two focused on testing
the first hypothesis, while experiment three aimed to test the
second hypothesis. Consequently, having such results, we want
to shed some light on whether training a new network, using
some quantized version of the original dataset, is beneficial

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html


when performing transfer learning from RGB to grayscale
datasets (with and without the presence of noise).

A. Image quantization

Image quantization focuses on reducing the number of
possible color values of an image. This process attempts to
reduce the amount of memory required to represent an image,
while maintaining a visual representation that is as close as
possible to the original image. As pointed out in [16], such
approach can greatly reduce the feature vector size (for hand-
crafted features) and even improve classification accuracies.

There are several ways of quantizing images, as explained
in [16]. In our experiment, we always quantized images by
uniformly grouping colors. For example, if we wish to convert
a grayscale color space with 256 possible colors to 64 colors,
we divide the original space in bins of 4 colors and map those
4 input colors to a single output color. In our case, the value
of the output color is the maximum among the possible color
values within the bin range.

B. Network architectures

Our experiments are carried out using models based on the
following CNN architectures:

Simple CNN2: this architecture is composed of four
convolutional layers divided into two blocks and two dense
layers. The first block contains two convolutional layers with
32 filters (3 × 3) each, followed by a max pooling layer and
a dropout layer. The second block consists of the remaining
two convolutional layers (64 filters, 3 × 3), also followed by
a max pooling and a dropout layer. This is then connected to
a dense layer with 512 processing units, a dropout layer and,
finally, the softmax layer.

Base Model CNN [17]: is similar to the Simple CNN
architecture having a greater number of trainable parameters
on the convolutional section of the network, that is the part
used for feature extraction. This architecture was employed
in [17] where it is called Base Model C.

ResNet-20 [18]: consists of twenty convolutional layers
organized into six residual units. Each one residual unit uses
the structure shown in Figure 2, alternating between a direct
skip connection and using a single convolutional layer as part
of the skip connection. The output of the last residual unit and
the last skip connection go through an average pooling layer,
which is then passed to a dense (softmax) layer that outputs
the classification probabilities.

All the architectures used are illustrated in Figure 3, where
the leftmost diagram represents the Simple CNN, the middle
one shows the Base Model CNN network architecture, and
the rightmost diagram, the ResNet-20. The layers shown in
colored blocks are the ones used on experiments where feature
extraction is performed, the entire networks are used other-
wise. We also present the number of trainable parameters of

2Network architecture used in the example code: https:
//github.com/keras-team/keras/blob/master/examples/
cifar10_cnn.py
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Fig. 2. Residual Unit.

both the entire network and the feature extractor (convolutional
part) in Table I.

The reason for choosing those particular networks are: the
Simple CNN is a model that has a simpler feature extractor,
given it has far less parameters on the convolutional part
when compared to the other two models. The Base Model
CNN – despite having more parameters in the convolutional
part when compared to the Simple CNN – only uses simple
CNN building blocks in a pretty straightforward manner. This
network was also chosen as a comparison to the Simple
CNN model, allowing to analyze whether an increase in the
number of parameters improves the robustness of the obtained
feature space. Lastly, the ResNet-20 network has a similar
number of trainable parameters when compared to the Base
Model CNN, however it takes advantage of a more complex
structure to combine its layers. The ResNet-20 is also a deeper
architecture.

We believe that the chosen architectures fairly covers the
different, widely used, CNNs. Also, as our objective is to
better understand the impacts that changing image quality, with
regards to color quantization and noise, has on classification
performance, we do not focus on obtaining state-of-the-art
results. Instead, we analyze the changes in accuracy so we can
have a good estimate of how CNNs behave in such scenarios.

TABLE I
NUMBER OF TRAINABLE PARAMETERS IN EACH ONE OF THE NETWORK

ARCHITECTURES USED DURING THE EXPERIMENTS.

model trainable parameters
full network feature network

Simple CNN2 1,250,858 65,568
Base Model CNN [17] 457,284 456,874
ResNet-20 [18] 570,602 568,032

C. Datasets

The datasets used in our experimental setup are listed and
explained next.

https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py
https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py
https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py


Conv2D: 96 filters (3x3)

Conv2D: 96 filters (3x3)

Dropout: 50%

Max Pooling: 3x3

Conv2D: 96 filters (3x3)

Conv2D: 96 filters (3x3)

Dropout: 50%

Max Pooling: 3x3

Conv2D: 192 filters (3x3)

Conv2D: 192 filters (1x1)

Conv2D: 10 filters (1x1)

Dense: 10 (softmax)

Conv2D: 32 filters (3x3)

Conv2D: 32 filters (3x3)

Dropout: 25%

Max Pooling: 2x2

Conv2D: 64 filters (3x3)

Conv2D: 64 filters (3x3)

Dropout: 25%

Max Pooling: 2x2

Dense: 512

Dropout: 50%

Dense: 10 (softmax)

Conv2D: 16 filters (3x3)

Batch Norm.

ReLU

Residual Unit*

Residual Unit

Residual Unit

Residual Unit

Residual Unit

Residual Unit

Batch Norm.

ReLU

Avg Pooling

Dense: 10 (softmax)

Fig. 3. Network architectures employed throughout our experiments. From
left to right: Simple CNN, Base Model CNN and ResNet-20. Blocks in green
represent convolutions used to extract features.

CIFAR-10 [10]: this dataset contains 60,000 32 × 32-
RGB images equally split into 10 classes and it is divided
into training and test sets with 50,000 and 10,000 images,
respectively.

CIFAR-100 [10]: is a dataset with 100 classes, where
each one has 600 32× 32-RGB images. Training and test sets
are provided and contain 500 and 100 images of each class,
respectively. Two sets of classes are provided for this dataset.
The first, and most used, contains 100 classes (referred to
as CIFAR-100 fine). The second set groups the original 100
classes into 20 superclasses, being referred to as CIFAR-100
coarse.

Fashion-MNIST [19]: is a 10 class dataset composed
of 28 × 28 grayscale images (256 colors). This dataset also
has 50,000 images for training and 10,000 images for testing.
To facilitate our transfer learning pipeline, we applied zero
padding on those images to turn them into 32× 32 images.

IV. RESULTS AND DISCUSSION

As stated in Section III, our first experiment trained 21
distinct architectures (Simple CNN, Base Model CNN and
ResNet-20) on seven versions of the CIFAR-10 dataset, where
the first is the original (RGB) version and the others are
grayscale ones quantized in 256, 128, 64, 32, 16 and 8 colors,
respectively.

After training, we computed the accuracy of every model on
all versions of the CIFAR-10 test set. The results are illustrated
in Figure 4, from which we notice the models obtained from

grayscale versions performed better then the original RGB
when employed on grayscale versions of CIFAR-10. On the
RGB test data they maintained a very similar performance.
Moreover, models at greater quantization levels (8 and 16
colors) were specially good at maintaining a more stable
accuracy across all test set versions.

Next, in our second experiment, we took the models trained
on the first experiment as feature extractors for the CIFAR-10
and three other datasets (CIFAR-100 fine, CIFAR-100 coarse
and Fashion-MNIST). To do so, we removed the dense part
(classifier) from the network and use the activation maps for
the last convolutional layer as a descriptor. This allows a for a
direct evaluation of the robustness of the CNN features. As in
experiment one, we created seven quantized versions of each
dataset. Next, we took every possible combination of dataset
and feature extractor to proceed as follows: 1) extract features
from the training set and train a logistic regression; 2) extract
features from the test set and evaluate this logistic regression
model. Please see Section III for a more detailed explanation
of this experiment.

The results from the second experiment are shown in Fig-
ure 5. By analyzing the plots, we draw some conclusions. First,
when dealing with grayscale images, the feature extractor
trained with RGB images is, in general, worse than most of the
feature extractors trained on grayscale images. As an example
– when using the ResNet-20 feature extractors to classify the
256-color grayscale version of CIFAR-100 fine – the RGB
feature extractor achieved 41.13% of accuracy, while the
grayscale with 64 colors obtained 44.89%. To show that this
is not an isolated case we computed the Friedman statistical
significance test to compare the models obtained using each
CNN architecture with regards to the quantization level that
they were trained with. For the Simple CNN architecture, the
network trained on 64-color images was able to obtain the
best average ranking, as shown in Table II. The Friedman test
resulted in a p-value of 1e−7, therefore we can reject the null
hypothesis (that there is no significant difference between the
ranking of the classifiers) at a 5% level of significance.We also
conducted this statistical significance test for the models based
on both the Base Model CNN and ResNet-20 architectures,
the rankings obtain by such tests are presented in Tables III
and IV, respectively. For the test with the Base CNN models
we obtained a p-value of 1e−8, while for the ResNet-20
models we obtained a p-value of 4e−8. Thus, we have enough
evidence to reject both null hypothesis at a 5% level of
significance.

The second conclusion is that, as in experiment one, the fea-
ture extractors obtained from images with less colors (mainly
8 and 16) are more consistent throughout the tests when it
comes to accuracy. They also have comparable performance
to the best model in most cases.

Lastly, in the third experiment, we compared the same
feature extractors – trained on experiment one – with regards
to resilience to noise. In order to do so, similarly to experiment
two, we trained logistic regression models based on all feature
extractor. However, we only trained them on the original
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TABLE II
AVERAGE RANKINGS FOR THE MODELS BASED ON THE SIMPLE CNN

ARCHITECTURE.

model average ranking
Simple CNN rgb 5.29

Simple CNN gray256 3.79
Simple CNN gray128 3.02
Simple CNN gray64 2.62
Simple CNN gray32 3.96
Simple CNN gray16 3.71
Simple CNN gray8 5.61

TABLE III
AVERAGE RANKINGS FOR THE MODELS BASED ON THE BASE MODEL

CNN ARCHITECTURE.

model average ranking
Base Model CNN rgb 5.43

Base Model CNN gray256 5.43
Base Model CNN gray128 4.52
Base Model CNN gray64 2.91
Base Model CNN gray32 2.68
Base Model CNN gray16 3.82
Base Model CNN gray8 3.21

TABLE IV
AVERAGE RANKINGS FOR THE MODELS BASED ON THE RESNET-20

ARCHITECTURE.

model average ranking
ResNet-20 rgb 5.89

ResNet-20 gray256 4.70
ResNet-20 gray128 3.20
ResNet-20 gray64 2.96
ResNet-20 gray32 2.75
ResNet-20 gray16 4.18
ResNet-20 gray8 4.32

version of Fashion-MNIST (noise-free grayscale images with
256 colors). Then, we tested such classifiers on the original
test set distorted by Gaussian noise with standard deviations
equal to 10, 20 and 30, respectively. Notice the Gaussian
noise was applied only on the test set. The results of such
experiment are presented in Figure 6.

A closer look at those results shows that the models using

features from heavily quantized images, especially the ones
from 8 and 16 colors, generally performed significantly better
than the other ones. One noticeable example occurred with the
Simple CNN feature extractors when the images were affected
by a Gaussian noise of standard deviation equals to 30. In
this particular case, the feature extractor trained using images
with 8 possible colors obtained an accuracy of 63.96%, while
the one trained using images of 256 colors was capable of
achieving only 43.41%.

V. REPRODUCIBILITY REMARKS

In order to facilitate the reproducibility of all experiments,
all source codes are available at https://github.com/
tiagosn/cnn_rgb_grayscale .

VI. CONCLUSIONS

We studied the impacts of using CNN architectures trained
on different color scheme images as feature extractors for RGB
and grayscale domains with different levels of quantization.
After conducting our experiments, we concluded that, if com-
puting power is available, it is better to train a new network
on a grayscale/quantized version of the original dataset, since
there is empirical evidence that it will achieve accuracy
improvements when applied to a grayscale domain. When
comparing the classification results of our features in different
quantization levels we observed that, for two out of three
architectures used in the experiments, the model trained with
images quantized to 32 gray levels obtained the best results.
Nevertheless, the results obtained by the features learned from
images with 64 gray levels seem to more consistent. That is,
the average ranking over all architectures achieved when using
64 gray levels was better than when using 32 gray levels.

Additionally, we evaluated the robustness of the learned
features in noisy scenarios using different quantization levels.
Our results confirm that models trained on datasets with less
colors – especially the ones trained with 8 and 16 color levels
– perform considerably better when classifying noisy images.
Therefore, training a CNN on a quantized version of the
original dataset can be advantageous when performing transfer
learning to images that are expected do be affected by noise.

https://github.com/tiagosn/cnn_rgb_grayscale
https://github.com/tiagosn/cnn_rgb_grayscale
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VII. FUTURE WORK

As future work, we intend to analyze the robustness of CNN
features in terms of:
• Better understanding the resilience to noise and quantiza-

tion of each feature map learned by each network layer.
This can be done by conducting experiments similarly to
as in [4];

• Exploring other types of noise, such as salt & pepper;
• In [20] and [16], authors showed that the color quantiza-

tion technique can have a great impact on classification
results, when using hand-crafted features. Thus, a more
detailed study on the best quantization approach would
be of great importance for CNN features;

• Performing experiments with other CNN architectures
(e.g. VGG [11] and Inception [21]) and additional
datasets, such as ImageNet.
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