
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Representation learning of spatio-temporal features from
video

Gabriel de Barros Paranhos da Costa
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Gabriel de Barros Paranhos da Costa

Representation learning of spatio-temporal features from
video

Thesis submitted to the Institute of Mathematics
and Computer Sciences – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. EXAMINATION
BOARD PRESENTATION COPY

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Moacir Antonelli Ponti
Co-advisor: Prof. Dr. Rodrigo Fernandes de Mello

USP – São Carlos
August 2019

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

P223r
Paranhos da Costa, Gabriel de Barros
 Representation learning of spatio-temporal
features from video / Gabriel de Barros Paranhos da
Costa; orientador Moacir Antonelli Ponti;
coorientador Rodrigo Fernandes de Mello. -- São
Carlos, 2019.
 169 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2019.

 1. Aprendizado de características. 2. Extração de
características. 3. Aprendizado profundo. 4.
Aprendizado de máquina. 5. Características espaço-
temporais. I. Ponti, Moacir Antonelli, orient. II.
de Mello, Rodrigo Fernandes, coorient. III. Título.

Gabriel de Barros Paranhos da Costa

Aprendizado de características espaço-temporais em vídeos

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Ciências de Computação
e Matemática Computacional. EXEMPLAR DE
DEFESA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Moacir Antonelli Ponti
Orientador: Prof. Dr. Rodrigo Fernandes de Mello

USP – São Carlos
Agosto de 2019

ACKNOWLEDGEMENTS

I would like to thank the Fundação de Amparo a Pesquisa do Estado de São Paulo

(FAPESP) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for
the opportunity to have the required funding to execute the research during my PhD. I am also
grateful for all the assistance offered by the Instituto de Ciências Matemáticas e Computação

(ICMC-USP). A special thanks to my supervisor Moacir A. Ponti for all the support and guidance
during all these years working together. Finally, I am very grateful for all my friends and family,
that encouraged me during my entire PhD.

“The way I see it, every life is a pile of good things and bad things.

The good things don’t always soften the bad things, but vice versa,

the bad things don’t necessarily spoil the good things

or make them unimportant ”

(The Doctor)

RESUMO

PARANHOS DA COSTA, G. B. Aprendizado de características espaço-temporais em vídeos.
2019. 169 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computaci-
onal) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2019.

Um dos principais desafios em visão computacional é codificar as informações presentes em
imagens e vídeos em um vetor de características que depois pode ser utilizado, por exemplo,
para treinar um modelo (aprendizado de máquina). Vídeos incluem um desafio a mais, uma vez
que tanto informações espaciais quanto temporais precisam ser consideradas. Para reduzir a
necessidade da criação de novos métodos de extração de características, métodos de aprendizado
de características buscam criar representação diretamente a partir dos dados; esses métodos
obtiveram resultados no estado da arte em diversas tarefas de visão computacionais baseadas
em imagens. Por esses motivos, o aprendizado de características espaço-temporais a partir de
vídeos é considerado como um próximo passo natural. Apesar de diversas arquiteturas terem
sido propostas com esse objetivo, os resultados obtidos por esses métodos, quando aplicados
a vídeos, são semelhantes aos obtidos pelos métodos tradicionais e apresentaram vantagens
consideravelmente inferiores do que em aplicações focadas em imagens. Nós acreditamos
que para encontrar melhorias na área de aprendizado de características espaço-temporais é
necessário obter um maior conhecimento sobre como as informações são codificadas por esses
métodos, permitindo a tomada de decisão mais bem informada sobre quando cada arquitetura
deve ser usada. Com esse fim, nós propomos um novo protocolo de avaliação que utiliza um
problema sintético em três diferentes configurações onde a informação relevante para a tarefa
aparece somente nas dimensões espaciais, na dimensão temporal ou em ambas. Nós também
investigamos as vantagens de se utilizar um método de aprendizado de características ao invés de
características projetadas manualmente, em especial com relação ao seu uso em diferentes tarefas.
Então, nós propomos um método de regularização baseado em redes generativas e transferência
de conhecimento como forma de melhorar o espaço de características obtido por métodos de
aprendizado de características. Os resultados mostram que quando realizando aprendizado de
características espaço-temporais é importante incluir a informações temporal durante todos os
estágios. Também notamos que apesar das arquiteturas que utilizam convolução na dimensão
temporal obterem os melhores resultados dentre as arquiteturas testadas, essas têm dificuldade
para se adaptar a mudanças na informação temporal. Quando comparando o desempenho de
características manualmente projetadas e de características aprendidas a partir dos dados, as
primeiras obtiveram resultados superiores na tarefa para o qual foram projetadas, mas seu
desempenho cai significativamente em outra tarefa, obtendo desempenho inferior nesse caso.
Finalmente, nós mostramos que redes generativas possuem em transferência de conhecimento
uma promissora aplicação, apesar de ser necessário expandir a análise para incluir características

espaço-temporais.

Palavras-chave: Aprendizado de características, Extração de características, Aprendizado pro-
fundo, Aprendizado de máquina, Visão computacional, Processamento de vídeos.

ABSTRACT

PARANHOS DA COSTA, G. B. Representation learning of spatio-temporal features from
video. 2019. 169 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Com-
putacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2019.

One of the main challenges in computer vision is to encode the information present in images
and videos into a feature vector that can later used, for example, to train a machine learning
model. Videos include an extra challenge since both spatial and temporal information need to be
considered. To address the challenges of creating new feature extraction methods, representation
learning focuses on creating data-driven representations directly from raw data; these methods
achieved state-of-the-art performance on many image-focused computer vision tasks. For these
reasons, spatio-temporal representation learning from videos is considered a natural next step.
Even though multiple architectures have been proposed for video processing, the results obtained
by these methods when applied to videos are still akin to the ones obtained by hand-crafted feature
extraction methods and reasonably bellow the advantages obtained by representation learning on
images. We believe that to advance the area of spatio-temporal representation learning, a better
understanding of how the information is encoded by these methods is required, allowing for more
knowledgeable decisions regarding when each architecture should be used. For this purpose,
we propose a novel evaluation protocol that looks at a synthetic problem in three different
settings where the relevant information for the task appears only on spatial dimensions, temporal
dimension or both. We also investigate the advantages of using a representation learning method
over hand-crafted feature extraction, especially regarding their use on different (previously
unknown) tasks. Lastly, we propose a data-driven regularisation method based on generative
networks and knowledge transfer to improve the feature space learnt by representation learning
methods. Our results show that when learning spatio-temporal representations it is important to
include temporal information in every stage. We also notice that while architectures that used
convolutions on the temporal dimension achieved the best results among the tested architectures,
they had difficulties adapting to changes in the temporal information. When comparing the
performance of hand-crafted and learnt representations on multiples tasks, hand-crafted features
obtained better results on the task they were designed for, but considerably worst performance on
a second unrelated task. Finally, we show that generative networks have a promising application
on knowledge transfer, even though further investigation is required in a spatio-temporal setting.

Keywords: Representation learning, Feature extraction, Deep learning, Machine learning, Com-
puter vision, Video processing.

LIST OF FIGURES

Figure 1 – Example use of the Perceptron model in a random set of points. 38

Figure 2 – Example result of the Perceptron model applied to the XOR problem. 38

Figure 3 – Example solution to the XOR problem obtained by a feedforward neural
network. 39

Figure 4 – Sparse connectivity used by convolution neural networks. 42

Figure 5 – Parameter sharing used by convolutional neural networks. 42

Figure 6 – Two of the most important recurrent neural network design patterns. 6a
shows a pattern were the recurrence occurs in hidden-to-hidden setting while
in 6b recurrences occurs from the output to the hidden layer. Images based
on: (GOODFELLOW; BENGIO; COURVILLE, 2016). 45

Figure 7 – General structure of an autoencoder. 46

Figure 8 – Pipeline used to extract feature vectors using the dense trajectory method.
Adapted from Wang et al. (2011). 53

Figure 9 – Pseudo-3D, R21D and R3D block architectures. Images based on Qiu, Yao
and Mei (2017). 61

Figure 10 – LSTM autoencoder architecture proposed by Srivastava, Mansimov and
Salakhudinov (2015) which performs reconstruction and prediction simulta-
neously. 62

Figure 11 – Network architectures used in the following experiments. Each type of layer
or layer block is represented by a different colour. Batch normalisation
layers were omitted. The CNN+LSTM (2) architecture uses a pretrained
MobilenetV2, in which each box represents a residual block as described
in (SANDLER et al., 2018). 69

Figure 12 – Experiment pipeline used to obtain the results presented in this chapter.
Each training dataset is used to train a model for each of the considered
architectures, creating three models for each architecture. Every model is
then tested on each one of the three test datasets, producing nine different
results for each architecture. 70

Figure 13 – Colour representation for each digit used for feature space visualisations. . . 71

Figure 14 – Sample video generated for each version of the BouncingMNIST dataset. The
main focus of this dataset is to analyse how spatio-temporal representation
learning behaves in different settings. 72

Figure 15 – Performance (per epoch) of the C3D architecture on the test sets. The training
and test sets used to evaluate each one of the three models belong to the same
dataset version. 74

Figure 16 – tSNE projections obtained from the representations extracted from the pre-
vious to last layer of the C3D architecture for each model (dataset version).
Both training and test sets belong to the same dataset version. Due to the
analysis being done in a multilabel setting, each projection is shown twice,
where the colour of each dot indicates the class it belongs to (classes from
each video are sorted so that the first projection – left column – shows the
colour of the smallest class, and the right column shows the colour of the
largest class present in the video). 82

Figure 17 – Accuracy (at the end of each epoch) of the R3D architecture on each test sets.
Both the training and test sets belong to the same dataset versions. 83

Figure 18 – PCA projections obtained from the representations extract from the activation
of the penultimate layer of each R3D model, using the test set of each version
of the dataset. Due to this being a multilabel problem, all projections are
shown twice. Images in the first column (left) show the colour of the dots
that indicate the lowest class in the video, while the second column shows
the colour of the class representing the highest digit in the video. 84

Figure 19 – Accuracy (at the end of each epoch) of the R21D architecture when tested on
the test set of each version of the dataset. Both training and test sets belong
to the same dataset version. 85

Figure 20 – tSNE projections obtained from representations extracted from the previous
to last layer of the R21D architecture for each model. Both training and test
sets belong to the same dataset version. Due to the analysis being done in a
multilabel setting, each projection is shown twice, where the colour of each
dot indicates the class it belongs to (classes from each video are sorted so
that the first projection – left column – shows the colour of the smallest class,
and the right column shows the colour of the largest class present in the video). 86

Figure 21 – Performance (per epoch) of the CNN+LSTM architecture on test sets. The
training and test sets used to evaluate each one of the three models belong to
the same dataset version. 87

Figure 22 – LDA projections obtained from the representations extracted from the pre-
vious to last layer of the CNN+LSTM architecture for each model (dataset
version). Both training and test sets belong to the same dataset version. Due
to the analysis being done in a multilabel setting and LDA being a supervised
projection method, two different projections are shown. The colour of each
dot indicates the class it belongs to. Classes from each video are sorted so
that the first projection – left column – shows the colour of the smallest class,
and the right column shows the colour of the largest class present in the video. 88

Figure 23 – Performance (per epoch) of the CNN+LSTM (2) architecture on the test sets.
The training and test sets used to evaluate each one of the three models belong
to the same dataset version. 88

Figure 24 – LDA projections obtained from the representations extracted from the previ-
ous to last layer of the CNN+LSTM (2) architecture for each model (dataset
version). Both training and test sets belong to the same dataset version. Due
to the analysis being done in a multilabel setting and LDA being a supervised
projection method, two different projections are shown. The colour of each
dot indicates the class it belongs to. Classes from each video are sorted so that
the first projection – left column – shows the colour of the smallest class,and
the right column shows the colour of the largest class present in the video.
The projections for the CNN features extracted using the Temporal version
of the dataset (b1) are not shown because LDA did not converge. 89

Figure 25 – C3D architecture pretrained in the Sports-1M dataset used in the experiments 92

Figure 26 – Example frames from the Hollywood2 Action dataset. 97

Figure 27 – Example frames from the KTH-Action dataset. 98

Figure 28 – Example frames from the Maryland Dynamic Scenes dataset. 99

Figure 29 – Example frames from the YUPENN Dynamic Scenes dataset. 100

Figure 30 – Confusion matrix – IDT-FV on KTH-Actions dataset 102

Figure 31 – Confusion matrix – C3D (16-frame blocks) on KTH-Actions dataset 104

Figure 32 – Confusion matrix – C3D (Voting) on KTH-Actions dataset 105

Figure 33 – Confusion matrix – C3D (k-Means quantisation) on KTH-Actions dataset . 106

Figure 34 – Confusion matrix – C3D (Average) on KTH-Actions dataset 108

Figure 35 – Confusion matrix – C3D (Statistical measures) on KTH-Actions dataset . . 109

Figure 36 – Confusion matrix – IDT-FV on Hollywood2 Actions dataset. 111

Figure 37 – Confusion matrix – C3D (k-Means quantisation) on Hollywood2 Actions
dataset. 113

Figure 38 – Confusion matrix – C3D (Average) on Hollywood2 Actions dataset. 114

Figure 39 – Confusion matrix – C3D (Statistical measures) on Hollywood2 Actions dataset.115

Figure 40 – Confusion matrix – IDT-FV on Maryland dataset. 117

Figure 41 – Confusion matrix – C3D (16-frame blocks) on Maryland dataset. 119

Figure 42 – Confusion matrix – C3D (Voting) on Maryland dataset. 120

Figure 43 – Confusion matrix – C3D (k-Means quantisation) on Maryland dataset. . . . 122

Figure 44 – Confusion matrix – C3D (Average) on Maryland dataset. 123

Figure 45 – Confusion matrix – C3D (Statistical measures) on Maryland dataset. 125

Figure 46 – Confusion matrix – IDT-FV on YUPENN dataset. 127

Figure 47 – Confusion matrix – C3D (16-frame blocks) on YUPENN dataset. 129

Figure 48 – Confusion matrix – C3D (Voting) on YUPENN dataset. 131

Figure 49 – Confusion matrix – C3D (k-Means quantisation) on YUPENN dataset. . . . 133

Figure 50 – Confusion matrix – C3D (Average) on YUPENN dataset. 135

Figure 51 – Confusion matrix – C3D (Statistical measures) on YUPENN dataset. 136

Figure 52 – Methodology pipeline. 139

Figure 53 – Pipeline used for the second set experiments using the CIFAR datasets. . . . 140

Figure 54 – Examples of classifiers used as the training set for the GAN. The set of
classifiers used for training contain only centred linear classifiers which
present a positive correlation between the axis and where the positive class
(red) is on the top-left side of the classifier. The samples used to train the
classifiers are discarded and only the linear SVM weight vector is used to
create the dataset. 142

Figure 55 – Scatter plot showing the behaviour of the synthetic dataset created. The
original data is shown in red, while a second version, disturbed by random
Gaussian noise, is shown in blue. 142

Figure 56 – Example images from the Omniglot dataset. 143

Figure 57 – Visualisation of the models obtained when training linear SVM classifiers on
the raw pixels of subsets of classes of the Omniglot dataset. 143

Figure 58 – Visualisation created to analyse the behaviour of the GAN during training.
These examples show different stages of training (epochs) when using DC-
GANs on the synthetic dataset. Real samples are represented by the red
dots. The green and yellow dots show the generated samples from the last
10 epochs, oldest to newest, respectively. The background colour indicates
the output of the discriminator for each region, where red indicates regions
classified as real and blue as fake. The bottom graph shows the discriminator
loss (red), the generator loss (blue) and the log of the MMD value (green). . 145

Figure 59 – Randomly generated classifiers in different stages of training of a DCGAN
on the synthetic dataset. It is possible to see that the generated classifiers
(background colour) become more similar to the training data as training
progresses. The dots are only used to highlight the changes in the generated
samples. 146

Figure 60 – Training data used to test the GAN regularisation. The dots’ colours indicates
their classes, while the background colour shows the classifier obtained by
training a linear SVM without regularisation. 147

Figure 61 – Comparison between real classifiers and randomly generated classifiers for
the Omniglot dataset using raw pixels and modelled by a BEGAN. 149

Figure 62 – Visualisation of the results of the models generated by a BEGAN trained
on the CIFAR models dataset. Each row shows the results for a different
generated classifier. The top 10 images who obtained the highest scores are
shown on the left, while the bottom 10 scored images are shown on the right. 151

Figure 63 – Plots showing the average and standard deviation test accuracy per epoch for
the CIFAR Resnet20v1 combination using different regularisation methods
and random search to define learning rate schedules. The top 5 learning rate
schedules are selected based on the validation accuracy and used to compute
the plotted metrics for 9 different randomly selected subsets of test classes
(10-way classification). 153

Figure 64 – Average and standard deviation of test accuracy over epochs for nine different
subsets of test classes. Learning rate schedules are subjected to random search
and the best 5 are selected based on the validation accuracy. Different colours
indicate different numbers of initialisation matrices generated by the GAN.
The Munkres algorithm is used to find the column order that maximises the
training accuracy. When more than one matrix is generated, the one with the
best training accuracy is used. 155

LIST OF TABLES

Table 1 – Number of trainable parameters per architecture 68

Table 2 – Accuracy obtained by the each architecture by evaluating each model on test
set of the dataset version used for training. We select the model used for
evaluation by choosing the one that achieved (at the end of an epoch) the best
training accuracy. 73

Table 3 – Accuracy obtained by the “best” model trained on Spatial for each architecture
and evaluated on the test set of every dataset version. 78

Table 4 – Accuracy obtained by the “best” model trained on Temporal for each architec-
ture and evaluated on the test set of every dataset version. 79

Table 5 – Accuracy obtained by the “best” model trained on Spatio-temporal for each
architecture and evaluated on the test set of every dataset version. 79

Table 6 – Analysis of the generalisation capability of the spatio-temporal representation
learning methods to consistent changes on temporal information. This exper-
iment considers two different settings of the Spatio-temporal dataset where
digits in the setting Velocity+ move 3 times faster than digits in Velocity–. . 80

Table 7 – Distribution of samples on each class of the Hollywood2 (Actions) dataset. . 97

Table 8 – Overall results on the KTH-Actions dataset. 101

Table 9 – Grid search results for the IDT-FV method using the KTH-Actions dataset. . 101

Table 10 – Per class performance of the IDT-FV features on the test set of the KTH-
Actions dataset. 102

Table 11 – Grid search results while classifying the 16-frame blocks descriptors extracted
by the C3D method from the KTH-Actions dataset. 103

Table 12 – Per class performance of the C3D features on the test set of the KTH-Actions
dataset when classifying the 16-frame blocks individually. 103

Table 13 – Per class performance of the C3D features on the test set of the KTH-Actions
dataset when choosing the majority class from the 16-frame blocks classification.104

Table 14 – Grid search results obtained after applying k-means quantisation on the de-
scriptors extracted by the C3D method from the KTH-Actions dataset. 105

Table 15 – Per class performance of C3D features when using k-means quantisation on
the KTH-Actions dataset. 106

Table 16 – Grid search results obtained after using the average of the descriptors extracted
by the C3D method to describe each video from the KTH-Actions dataset. . . 107

Table 17 – Per class performance in the KTH-Actions dataset using C3D features aver-
aged over all 16-frame blocks to obtain a video-level descriptor. 107

Table 18 – Grid search results obtained by using the concatenation of statistical measures
of the representations extracted by the C3D method to describe each video
from the KTH-Actions dataset. 107

Table 19 – Per class performance on the KTH-Actions dataset of C3D features when
using the concatenation of statistical measures to combine the descriptors of
16-frame blocks into a video-level representation. 108

Table 20 – Overall results on the Hollywood2 Actions dataset. 109

Table 21 – Grid search results for the IDT-FV method using the Hollywood2 Actions
dataset. 110

Table 22 – Per class performance of the IDT-FV features on the test set of the Hollywood2
Actions dataset. 110

Table 23 – Results from the grid search when using k-means quantisation to combine
the descriptors extracted by C3D from the Hollywood2 Actions dataset. The
highlighted parameter was the one selected for the remainder of this experiment.112

Table 24 – Evaluation of the performance of k-means quantisation as a combination
method for the features extracted by C3D from the Hollywood2 Actions dataset.112

Table 25 – Per class evaluation of the C3D descriptors combined using the average for
videos in the test set of the Hollywood2 Actions dataset. These results were
obtained using a linear SVM classifier on a “one-vs-all” setting. 113

Table 26 – Per class performance of C3D features when using concatenation of statistical
measures to combine the descriptors of 16-frame blocks for the videos in the
Hollywood2 Actions dataset. 114

Table 27 – Overall results on the Maryland dataset. 115

Table 28 – Grid search results for IDT-FV representations extracted from the Maryland
dataset. The highlighted parameter was the one selected to be used during the
rest of this experiment. 116

Table 29 – Per class performance of IDT-FV representations on the test set of the Mary-
land dataset. 116

Table 30 – Per class performance of C3D representations from the Maryland dataset’s
test set when classifying each 16-frame blocks independently. 118

Table 31 – Per class performance of C3D descriptors on the test set of the Maryland
dataset when choosing the majority predicted class from the 16-frame blocks
in each video. 118

Table 32 – Grid search for the C parameter of a linear SVM classifier using a k-means
quantisation to combine the descriptors of multiple 16-frame blocks to create
representations for videos of variable length from the Maryland dataset. . . . 119

Table 33 – Efficiency of SVM classifiers for each class in the test set of the Maryland
dataset while using k-means quantisation to create the video-level representa-
tions based on descriptors extracted from 16-frame blocks by C3D. 121

Table 34 – Per class performance of C3D features when the average descriptor was used
as video-level representation for videos in the Maryland dataset. 121

Table 35 – Grid search results that defined the C parameter of the classifier. Computed
by performing a 5-fold cross-validation in the training set of the Maryland
dataset described by C3D and then combined the concatenation of multiple
statistical measures. The chosen parameter is highlighted. 122

Table 36 – Per class performance of C3D representations in the Maryland dataset, com-
bined by concatenating multiple statistical measures (average, standard devia-
tion, kurtosis, skewness, maximum and minimum) and classified with a linear
SVM. 124

Table 37 – Overall results on the YUPENN dataset. 124

Table 38 – Grid search results for the IDT-FV representations on the YUPENN dataset.
The highlighted parameter was the one selected to be used during the rest of
this experiment. 125

Table 39 – Per class performance of SVM classifiers on the IDT-FV features on the test
set of the YUPENN dataset. 126

Table 40 – Average and standard deviation of the F1-score obtained during the grid search
computed using each 16-frame blocks representation extracted by C3D for
videos in the YUPENN dataset. 126

Table 41 – Performance evaluation of SVM classifiers for each class in the YUPENN
dataset when classifying each 16-frame block individually (C3D representations).128

Table 42 – Per class results of the classification of test videos from the YUPENN dataset
described by C3D and combined using voting. 130

Table 43 – Results for the grid search on the YUPENN dataset. The representation for
each video was obtained using k-means quantisation combination on 16-frame
blocks descriptors extracted by C3D. 130

Table 44 – Performance of linear SVMs on the YUPENN dataset described using k-means
quantisation of the 16-frame block descriptors extracted by C3D. 132

Table 45 – Grid search for the C parameter of the SVM when describing the videos from
the YUPENN dataset using C3D representations combined by averaging. . . 132

Table 46 – Per class results on the test set of the YUPENN datasets using descriptors
extracted using C3D and combined by averaging the representations of all
16-frame blocks contained in each video. 134

Table 47 – Grid search performed in feature vectors obtained by computing and concate-
nating multiple statistical measures from representations extracted using C3D
from all 16-frame blocks in each video from the YUPENN dataset. 134

Table 48 – Performance of the SVM classifier for each class in the YUPENN dataset.
Each video was described using the concatenation of multiple statistical mea-
sures computed on all representations (C3D) of 16-frame blocks in a video. . 136

Table 49 – Regularisation based on the discriminator output of a DCGAN trained on the
synthetic dataset. The regularisation is performed during training a classifier
on small (5) subsample of the dataset shown in Figure 60. The columns “d”
and “l2” show the values of λ used for the discriminator regulariser and l2

regulariser, respectively. Average and standard deviation were computed over
the results of 10 repetitions using different subsets. 148

Table 50 – Regularisation based on MLE approach using the discriminator of a DCGAN
trained on the synthetic dataset. The regularisation is performed during train-
ing a classifier on small (5) subsample of the dataset shown in Figure 60.
The columns “d” and “l2” show the values of λ used for the discriminator
regulariser and l2 regulariser, respectively. Average and standard deviation
were computed over the results of 10 repetitions using different subsets. . . . 148

Table 51 – BEGAN regularisation using reconstruction error in a few-shot setting (3
training samples, 2 validation samples and 15 test samples per class) on the
Omniglot dataset. Average and standard deviation over 50 repetitions using
different random subsets. 150

Table 52 – Results for the experiments using BEGAN regularisation on the last layer
(softmax) of a residual network. Columns “d” and “l2” show the values of
the λ parameters for the BEGAN regularisation and l2 regularisation, respec-
tively. Column “MLE” indicates if the BEGAN regularisation was done using
reconstruction error (False) or the MLE approach (True). Average and stan-
dard deviation was computed over the results of 10 repetitions using different
subsets of classes and splits. Training was conducted using 7 examples, the
validation split (used to define the best epoch) contains 3 examples and test
used 100 examples. 152

Table 53 – Initialisation using generated samples (matrix columns) reordered using the
Munkres algorithm to maximise the initial accuracy. When multiple matrices
are generated, the one with the best initial accuracy in the training set is
selected. Average and standard deviation computed over 10 repetitions using
different subsets of classes. 154

Table 54 – Initialisation using randomly generated matrices reordered using the Munkres
algorithm to maximise the initial accuracy. When multiple matrices are gen-
erated, the one with the best initial accuracy in the training set is selected.
Average and standard deviation computed over 10 repetitions using different
subsets of classes. 154

LIST OF ABBREVIATIONS AND ACRONYMS

Adaline Adaptive Linear Neuron

BEGAN Boundary Equilibrium GAN

BOF Bag-of-Features

BOV Bag-of-Visual-Words

BOW Bag-of-Words

C3D 3D Convolutional Network

CNN Convolutional Neural Network

CPU Central Processing Unit

DCGAN Deep Convolutional GAN

DNN Deep Neural Network

DT Dense Trajectories

EBGAN Energy Based GAN

FV Fisher Vector

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

HOF Histogram of Optical Flow

HOG Histogram of Oriented Gradients

IDT Improved Dense Trajectories

LDA Linear Discriminant Analysis

LMS Lest Mean Squares

LSTM Long Short-Term Memory

MBH Motion Boundary Histogram

MC Mixed Convolutional Network

MLE Maximum Likelihood Estimate

MLP Multilayer Perceptron

MMD Maximum Mean Discrepancy

P3D Pseudo-3D

PCA Principal Component Analysis

RANSAC Random Sample Consensus

ReLU Rectified Linear Unit

rMC “Reversed” Mixed Convolutional Network

RNN Recurrent Neural Network

SFV Spatial Fisher Vectors

SIFT Scale-Invariant Feature Transform

SPM Spatial Pyramid Matching

STIP Spatio-Temporal Interest Point

STPM Spatial-Temporal Pyramid Matching

SURF Speeded-Up Robust Features

SVM Support Vector Machine

TSN Temporal Segment Network

tSNE t-Distributed Stochastic Neighbour Embedding

VC-dimension Vapnik–Chervonenkis Dimension

WGAN Wasserstein GAN

CONTENTS

1 INTRODUCTION . 29
1.1 Hypothesis . 32
1.2 Publications . 33
1.2.1 Accepted or published papers (descending chronological order) . . . 33
1.2.2 Papers in writing or review stage . 33
1.3 Document organisation . 34

2 FUNDAMENTAL CONCEPTS . 35
2.1 Opening remarks . 35
2.2 Representation learning . 35
2.3 Artificial neural networks . 36
2.3.1 Processing unit . 37
2.3.2 Feedforward networks . 39
2.4 Deep learning . 40
2.5 Convolutional networks . 40
2.6 Recurrent neural networks . 43
2.6.1 Long Short-Term Memory (LSTM) 44
2.7 Autoencoders . 46
2.8 Generative adversarial networks . 47
2.8.1 Deep Convolutional GAN (DCGAN) 48
2.8.2 Wasserstein GAN (WGAN) . 49
2.8.3 Boundary equilibrium GAN (BEGAN) 49
2.9 Concluding remarks . 50

3 SPATIO-TEMPORAL REPRESENTATION LEARNING 51
3.1 Opening remarks . 51
3.2 Hand-crafted spatio-temporal features 51
3.2.1 Dense trajectories . 52
3.2.1.1 Histogram of Oriented Gradients (HOG) 55
3.2.1.2 Histogram of Optical Flow (HOF) . 56
3.2.1.3 Motion Boundary Histogram (MBH) . 57
3.3 Spatio-temporal representation learning 57
3.3.1 Temporal information fusion . 58

3.3.1.1 Fusion by concatenation . 59
3.3.1.2 Temporal pooling . 59
3.3.1.3 Temporal convolution . 59
3.3.1.4 Recurrent network . 61
3.3.2 Two-stream networks . 62
3.3.3 Video clip selection . 64
3.4 Concluding remarks . 64

4 SPATIO-TEMPORAL REPRESENTATION ANALYSIS 67
4.1 Opening remarks . 67
4.2 Experimental setup . 68
4.3 Datasets . 71
4.3.1 BouncingMNIST . 71
4.4 Results . 73
4.4.1 Intra-dataset analysis . 73
4.4.1.1 C3D . 74
4.4.1.2 R3D . 75
4.4.1.3 R21D . 75
4.4.1.4 CNN+LSTM . 76
4.4.1.5 CNN+LSTM (2) . 77
4.4.2 Cross-dataset analysis . 77
4.4.3 Velocity variation analysis . 80
4.5 Concluding remarks . 80

5 REPRESENTATION GENERALISATION ANALYSIS 91
5.1 Opening remarks . 91
5.2 Experimental setup . 91
5.3 Datasets . 95
5.3.1 Action recognition . 96
5.3.1.1 Hollywood2 Actions . 96
5.3.1.2 KTH-Action . 96
5.3.1.3 Sports-1M . 97
5.3.2 Dynamic scene recognition . 98
5.3.2.1 Maryland Dynamic Scenes (UMD) . 98
5.3.2.2 YUPENN Dynamic Scenes . 99
5.4 Results . 100
5.4.1 KTH-Actions . 100
5.4.1.1 IDT-FV . 101
5.4.1.2 C3D . 102
5.4.1.2.1 Classification of 16-frame blocks . 102

5.4.1.2.2 Combination by voting . 103
5.4.1.2.3 Combination by k-means quantisation . 104
5.4.1.2.4 Combination by average . 105
5.4.1.2.5 Combination by statistical measures . 107
5.4.2 Hollywood2 Actions . 108
5.4.2.1 IDT-FV . 110
5.4.2.2 C3D . 111
5.4.2.2.1 Combination by k-means quantisation . 111
5.4.2.2.2 Combination by average . 111
5.4.2.2.3 Combination by statistical measures . 112
5.4.3 Maryland Dynamic Scenes . 113
5.4.3.1 IDT-FV . 116
5.4.3.2 C3D . 116
5.4.3.2.1 Classification of 16-frame blocks . 116
5.4.3.2.2 Combination by voting . 117
5.4.3.2.3 Combination by k-means quantisation . 119
5.4.3.2.4 Combination by average . 120
5.4.3.2.5 Combination by statistical measures . 121
5.4.4 YUPENN Dynamic Scenes . 122
5.4.4.1 IDT-FV . 124
5.4.4.2 C3D . 125
5.4.4.2.1 Classification of 16-frame blocks . 125
5.4.4.2.2 Combination by voting . 126
5.4.4.2.3 Combination by k-means quantisation . 127
5.4.4.2.4 Combination by average . 127
5.4.4.2.5 Combination by statistical measures . 128
5.5 Concluding remarks . 128

6 GENERATIVE ADVERSARIAL NETWORKS FOR KNOWLEDGE
TRANSFER . 137

6.1 Opening remarks . 137
6.2 Experimental setup . 139
6.3 Datasets . 141
6.3.1 Synthetic dataset . 141
6.3.2 Omniglot . 142
6.3.3 CIFAR . 143
6.4 Experiments . 144
6.4.1 Understanding GANs . 144
6.4.2 Using GANs for regularisation . 146
6.4.3 Regularising Linear SVM for character classification 148

6.4.4 Regularising residual networks for the CIFAR dataset 150
6.4.5 Initialisation using generated samples 153
6.5 Concluding remarks . 155

7 CONCLUSION . 157
7.1 Future Work . 158

BIBLIOGRAPHY . 161

29

CHAPTER

1
INTRODUCTION

Videos are spatio-intensity patterns that vary with time, which are also commonly seen
as time sequences of static images. In recent years, with the development of on-demand video
platforms and the cheapening of image and video capture cameras, the availability of visual
data has increased at an accelerated pace. For example, only in the Youtube service, 400 hours
of video are stored per minute 1. Due to the amount of data being created, computers need to
make sense of it all so that it can be presented to the users in an orderly manner. To achieve
this, machine learning algorithms try to identify patterns in the available data to power broadly
used aspects of modern society such as web searching, content filtering on social networks and
recommendations on e-commerce websites (LECUN; BENGIO; HINTON, 2015).

Video processing and analysis has been a topic of interest in machine learning and
pattern recognition for years focusing on many different problems and tasks, such as action
recognition (TRAN et al., 2018), action localisation (SHOU; WANG; CHANG, 2016), anomaly
detection (XU et al., 2017), scene recognition (QIU; YAO; MEI, 2017), among others. One of
the main difficulties when processing videos is to deal with their high dimensional and spatio-
temporal nature. Each frame, in principle, can be seen as a static image containing visual (spatial)
information. This simple fact makes the task of video processing computationally expensive even
when processing short video clips, given that it may contain a high number o images. Moreover,
since a dynamic between spatial content of consecutive frames exists, this creates a temporal
dimension. In most cases, the spatial content changes slowly with time (temporal coherence),
but there can also be abrupt transitions. How to describe both spatial and temporal information
to understand a video’s content is still a matter of investigation and one of the main limitations
encountered when applying machine learning techniques to video-related tasks.

Originally, when working with images and videos, the most commonly used descriptors
were based on the associated textual information, such as keywords (CHENG; DALE; LIU,

1 According to Business Insider, 07/11/2017. Source: <https://www.businessinsider.com/
viewers-find-objectionable-content-on-youtube-kids-2017-11>

https://www.businessinsider.com/viewers-find-objectionable-content-on-youtube-kids-2017-11
https://www.businessinsider.com/viewers-find-objectionable-content-on-youtube-kids-2017-11

30 Chapter 1. Introduction

2008). However, there is no guarantee that this meta-data accurately describes the visual data
and often produced unreliable results. To solve this problem, feature extraction methods were
proposed to encode visual information into feature vectors. Initially, these methods focused on
describing static images by encoding visual information such as colour, shape and texture. These
methods were also applied to videos but did not consider any type of temporal information.
Currently, the standard approach used to extract features from raw videos considers each frame
as a static image, where it detects interest points and then applies classical static image feature
extraction methods, such as SIFT (LOWE, 1999) or HOG (DALAL; TRIGGS, 2005), in a region
surrounding each of these points (KARPATHY et al., 2014).

A similar idea was used to incorporate stronger temporal relation between frames into
the descriptor (WANG; SCHMID, 2013), in which optical flow was used to densely estimate
the trajectories of pixels in a sequence of images. These trajectories define where classical
feature extraction methods are used. Some of these classical feature extraction methods were
also adapted to incorporate temporal information. For example, the SIFT and HOG methods
were both adapted so they could be applied to action recognition tasks. These adaptations are
called SIFT-3D (SCOVANNER; ALI; SHAH, 2007) and HOG3D (KLASER; MARSZAŁEK;
SCHMID, 2008).

Conventional machine learning methods rely on good feature extraction techniques
to learn relevant information about the data. Designing a good feature extraction method is
complicated and requires careful engineering and vast knowledge of the domain, which makes it
expensive and time-consuming. Also, most feature extraction methods are task-specific, which
causes new tasks, or even new datasets, to require the development of new techniques. This fact
lead researches towards representation learning methods (BENGIO; COURVILLE; VINCENT,
2013). Representation learning focuses on allowing computers to automatically discover relevant
representations needed for detection or classification directly from raw data (LECUN; BENGIO;
HINTON, 2015). This is currently even more relevant since it allows machine learning methods
to take advantage of the high quantities of available data.

These methods have recently gained prominence in both the academy and the industry
due to the results achieved by deep learning techniques. These techniques use a hierarchy
with multiple levels of representations and create more abstract representations at higher levels
of the hierarchy by combining simpler representations from lower layers (GOODFELLOW;
BENGIO; COURVILLE, 2016). This approach has successfully achieved state-of-the-art results
in many different areas, specially in computer vision and artificial intelligence (MNIH et al.,
2015), in tasks such as image classification (KRIZHEVSKY; SUTSKEVER; HINTON, 2012),
object (SZEGEDY et al., 2014) and speech (HINTON et al., 2012) recognition. The use of deep
learning concepts for video processing is considered the natural next step for the area, due to the
success achieved in static image applications (LÄNGKVIST; KARLSSON; LOUTFI, 2014).

In this context, there are many ways to create end-to-end deep learning models that

31

leverage spatial and temporal information from videos. Some of the most common approaches
use either convolutions to process both spatial and temporal information, or a combination
of convolutional and recurrent layers to process spatial (visual) and temporal information,
respectively. Another way of approaching this problem is by using a separate network for each
information type, usually both convolutional, which process traditional images and temporal
information encoded into images by using optical flow. However, most of the proposed methods
model short temporal information, using fixed-size windows containing a small number of
consecutive frames. The main disadvantage of modelling a short video clip is that each time
window only contains a small amount of the information present in the full video. This may
result in a feature vector that describes little more than when analysing individual frames (NG et

al., 2015). The use of fixed-size windows also makes it difficult to work with real-world datasets,
where video length is highly variable and forces the use of quantisation techniques to obtain a
fixed-size length feature vector.

Even though these architectures are being used for many different applications, little
is known about the impact of the choice of each architecture, which are their strong and weak
points and whether one architecture is more suitable for a specific domain. Also, to the best of
our knowledge, there are no studies that investigate how these architectures encode spatial and
temporal information and if they can generalise when there are small changes to one of these.
Furthermore, it is important that these methods learn to extract generic video representations
since it would help solve many different computer vision tasks in a homogeneous way (TRAN et

al., 2015). As far as we know, only one spatio-temporal representation learning technique was
proposed for a generic setting. This method (TRAN et al., 2015) uses a three dimensional Convo-
lutional Neural Network (CNN) to capture both spatial and temporal information simultaneously.
However, in addition to using a small fixed-size window, this method was not able to overcome
traditional CNNs when applied to datasets with a small number of videos. Also, the resolution of
the inputs had to be reduced due to the computational cost of the algorithm.

The experiments and results presented in this document provide new insight and evidence
on how to approach the problem of extracting spatio-temporal descriptors from videos. In order
to better evaluate representation learning methods, we present a novel evaluation framework that
leverages a set of datasets based on the BouncingMNIST dataset (SRIVASTAVA; MANSIMOV;
SALAKHUDINOV, 2015) designed to address different settings of a spatio-temporal problem.
As far as we know, there is no previous work that explicitly investigates the behaviour of deep
learning architectures encoding spatio-temporal information from videos. We also investigate
how deep learning architectures compare to state-of-the-art hand-crafted feature extraction
methods when applied to a setting where there is not enough data on the target dataset to train the
network. To tackled this problem a larger non-related dataset is used to train the network, which
is then used to extract features from the target dataset. Lastly, as a parallel work, we investigate
the use of generative neural networks as a knowledge transfer method that takes advantage of
models created to address similar tasks and creates a task-specific regulariser.

32 Chapter 1. Introduction

Our results show that, even though a deep network is currently responsible for the
best results on action recognition (I3D (CARREIRA; ZISSERMAN, 2017)), there are lots of
intrinsic information in videos that are not modelled by current spatio-temporal representation
learning architectures. Little is known about how each of these architectures deals with video
data and which are the architectures that should be used in each setting or task. We believe our
results take a step in the direction of increasing our understanding. Additionally, we show that
generative networks can be used for knowledge transfer, guiding training procedures and helping
representation learning methods overcome the lack of labelled data, while also decreasing the
amount of time required to train a new model. Moreover, since many representation learning
methods depend directly on their initial condition to achieve good results, the proposed generative
network model for knowledge transfer can also provide a better initial condition.

1.1 Hypothesis

Let x ∈ Rc×w×h×t be a video with duration t (temporal dimension – number of frames),
resolution w× h and c channels (e.g. c = 3 for RGB videos, c = 1 for greyscale) (spatial
dimensions). Representation learning algorithms try to find a function that maps each input into
a n dimensional space optimised based on a loss function L , i.e. f (x) : x→ x̂, where x̂ ∈ Rn.
These representation learning methods are typically used in a stacked organisation to create
deep learning architectures, on which backpropagation is used so that a single loss L is used to
optimise multiple representation learning stages.

Since representation learning via deep learning methods lead to state-of-the-art results in
many computer vision tasks that focus on analysing static images, it is only natural to extend
them to analyse videos. When dealing with video inputs, we believe that f (x) should consider
both temporal and spatial dimensions to find the feature space where L (f (x̂)) is minimal. In
this context, we hypothesise that by having an adequate protocol that allows for better evaluation
of how spatial and temporal information is encoded by a representation learning algorithm, we
will be able to identify which architectures are more appropriate for a given task. We also believe
that representation learning algorithms provide representations that more general than the ones
extracted by hand-crafted feature extraction methods, and that the learnt representations can
be used for different applications without the need to retrain or redesign while maintaining a
reasonable performance level. Lastly, we conjecture that representation learning algorithms can
benefit from data-driven regularisation and knowledge transfer.

1.2. Publications 33

1.2 Publications

1.2.1 Accepted or published papers (descending chronological order)

∙ Ponti, M. A.; Paranhos da Costa, G. B.; Santos, F. P.; Silveira, K. U. Supervised and

Unsupervised Relevance Sampling in Handcrafted and Deep Learning Features obtained

from Image Collections. In: Applied Soft Computing, 2019.

∙ Nazare, T. S.; Paranhos da Costa, G. B.; de Mello, R. F.; Ponti, M. A. Color quantization in

transfer learning and noisy scenarios: an empirical analysis using convolutional networks.
In: SIBGRAPI 2018 - Conference on Graphics, Patterns and Images, 2018, Foz do Iguaçu
- PR - Brazil.

∙ Ponti, M.; Paranhos da Costa, G. Como funciona o Deep Learning. In: Tópicos em
Gerenciamento de Dados e Informações, 2017.

∙ Nazare, T.; Paranhos da Costa, G.; Contato, W.; Ponti, M. Deep convolutional neural

networks and noisy images. In: Iberoamerican Conference on Pattern Recognition (CIARP),
2017.

∙ Ponti, M.; Chaves, A.; Jorge, F. R.; Paranhos da Costa, G. B.; Coulturato, A.; Branco, K.
R. J. C. Precision Agriculture: Using Low-Cost Systems to Acquire Low-Altitude Images.
In: IEEE Computer Graphics and Applications, 2016.

∙ Contato, W. A.; Nazaré, T. S.; Paranhos da Costa, G. B.; Ponti, M.; Batista Neto, J. E. S.
Improving Non-Local Video Denoising with Local Binary Patterns and Image Quantization.
In: SIBGRAPI 2016 - Conference on Graphics, Patterns and Images, 2016, São José dos
Campos - SP - Brazil.

∙ Paranhos da Costa, G. B.; Contato, W. A.; Nazaré, T. S.; Batista Neto, J. E. S.; Ponti, M.
An empirical study on the effects of different types of noise in image classification tasks. In:
WVC 2016 - XII Workshop de Visão Computacional, 2016, Campo Grande - MS - Brazil.

1.2.2 Papers in writing or review stage

∙ Paranhos da Costa, G. B.; Ponti, M. A. Learning spatio-temporal representations from

video data. Submitted to Pattern Recognition

∙ Ribeiro, L. S. F.; Paranhos da Costa, G. B.; Ponti, M. A. TOPGAN: triplet optimised

generative adversarial networks.

34 Chapter 1. Introduction

1.3 Document organisation
The remainder of this document is organised as follows:

Chapter 2 introduces basic concepts and techniques relevant to the methods and experiments
explained in other chapters;

Chapter 3 presents state-of-the-art representation learning and feature extraction methods used
to acquire spatio-temporal descriptors from video;

Chapter 4 establishes a novel spatio-temporal representation learning evaluation framework
that allows for better understanding on how each method encodes information present in
videos and highlights the pros and cons of several deep learning architectures selected for
these experiments;

Chapter 5 compares the ability of state-of-the-art hand-crafted feature extraction and a deep
learning architecture to generalise the information learnt to other datasets and domains;

Chapter 6 describes a novel regularisation technique based on generative neural networks that
try to model the distribution of known classifiers to leverage their knowledge to similar
tasks;

Chapter 7 summarises the results presented in previous chapters and discusses their meaning
and impact on spatio-temporal representation learning from video.

35

CHAPTER

2
FUNDAMENTAL CONCEPTS

2.1 Opening remarks

Most machine learning methods are limited by their ability to process real-world data in
their raw form. Careful engineering and domain knowledge are necessary so that the raw data
can be transformed into a relevant set of features, i.e. mapped into a feature space, in order to
serve as input to machine learning techniques.

One of the greatest problems in this context is the definition of which features are relevant
for the computer to be able to understand real-world abstractions (GOODFELLOW; BENGIO;
COURVILLE, 2016). Although domain-specific knowledge can be used and would allow the
development of features that are relevant to an application, using such an application-specific
effort is expensive and time costly.

This chapter presents key machine learning and feature extraction concepts used to
address the problem of generating descriptors based on images and videos. These concepts
were used to design the methods and experiments presented in the following chapters of this
document.

2.2 Representation learning

One of the possible solutions to the problem of extracting relevant information from
data is to use models that are able to not only map representations to concepts but also to learn
the representations themselves. This is the goal of a research area known as feature learning

or representation learning (BENGIO; COURVILLE; VINCENT, 2013). Features learned, in
general, achieve better results than the ones obtained from features that were designed manually,
which are called hand-crafted representations (GOODFELLOW; BENGIO; COURVILLE, 2016).
Another advantage of using representation learning is that it allows artificial intelligence systems

36 Chapter 2. Fundamental concepts

to adapt rapidly to a new task, reducing the need of human intervention, since most of the
time features extracted by using representation learning can be generalised to many different
applications.

Bengio, Courville and Vincent (2013) proposed some general-purpose priors that should
be taken into consideration when proposing feature extraction or representation learning methods.
These priors were created in an attempt to describe certain rules followed by the real world and
they are not task-specific. Some of these priors are:

∙ Smoothness – if x≈ y then f (x)≈ f (y), f being the function to be learned;

∙ Multiple explanatory factors – the distribution of the data is composed by different
underling factors. Most of what is learned about one of these factors can be generalised to
other factors;

∙ Hierarchical organisation of explanatory factors – concepts that describe the world
can be combined to create other, more abstract, concepts;

∙ Semi-supervised learning – a subset of the factors that explain the distribution of the data
also explains a lot about their classes, given the data;

∙ Shared factors across tasks – multiple tasks can be explained by similar factors;

∙ Manifolds – probability mass concentrates on regions that have smaller dimensionality
then the data’s original space;

∙ Natural clustering – different values of categorical variables can be associated to separate
manifolds;

∙ Temporal and spatial coherence – consecutive or spatially nearby observations tend to
be associated with the same value of categorical variables or a small move on the surface
of a high-density manifold;

∙ Sparsity – only a small fraction of the possible factors are relevant when representing a
given observation;

∙ Simplicity of factor dependencies – good high-level representations use linear dependen-
cies to connect factors.

2.3 Artificial neural networks

The name “artificial neural network” originates from attempts to represent information
processing in biological systems using mathematical formulations (BISHOP, 2006). Ever since,
this term has been broadly used to address many different models, even for some whose biological

2.3. Artificial neural networks 37

plausibility has been widely contested. In pattern recognition and machine learning context,
biological plausibility would impose unnecessary constraints on the models, when the focus is
directed to creating models that efficiently performs statistical pattern recognition. Thus, the
“neural network” term in machine learning does not guarantee that the model is biologically
realistic.

Neural networks focus on solving problems that depend on subtle factors that can not
be incorporated into an algorithm (KRIESEL, 2007). To achieve this, these methods try to
mimic the capability of biological neural networks to adapt and learn the best ways to deal
with such complex problems. An artificial neural network is composed of a pool of simple
processing units that communicate through signals passed over a large number of weighted
connections (KRÖSE et al., 1996). The most commonly used processing units are known
as the Perceptron model (ROSENBLATT, 1958) and the Adaptive Linear Neuron (Adaline)
model (WIDROW; HOFF et al., 1960).

2.3.1 Processing unit

The Perceptron model, proposed by Rosenblatt (1958), was the first processing unit model
for artificial neural networks known. This model uses linear thresholds to achieve a binary output.
The second processing unit model, Adaline (WIDROW; HOFF et al., 1960), works similarly
to the Perceptron model, though it produces a linear output without applying a threshold. Both
of these processing units use a variant of a delta rule for their training procedure (HENSELER,
1995).

Given a vector x ∈ Rn as input, the Perceptron model generates a linear binary classifier
that searches the feature space for a hyperplane that divides that feature space into two possible
classes, with the objective of minimising training error. This is done by gradually adjusting the
weights w ∈ Rn and bias b ∈ R of the model f (·) (Equation (2.1)) by following a descending
gradient. With each update to the weights and bias, the model tries to reduce the number of errors
committed in a set of samples called training set. Figure 1 shows an example of classifier found
by the Perceptron model.

f (x) =

1, if wx+b > 0

0, otherwise
(2.1)

This learning procedure takes the form of a delta rule when written in a mathematical
form (HENSELER, 1995). Defining the updates to the weights w and the bias b as ∆w and ∆b,
their respective delta rules can be written as Equations (2.2) and (2.3), where f (x) is the output
of the current classifier given x as input and Y is the ground truth label of x.

∆wi =−(f (x)−Y)xi (2.2)

38 Chapter 2. Fundamental concepts

Figure 1 – Example use the Perceptron model in a random set of points.

Figure 2 – Example result of the Perceptron model applied to the XOR problem. By looking at the feature
space, it is possible to see that there is no possible way of solving the XOR problem using a
single linear hyperplane. Different colours indicate different target outputs.

∆b = f (x)−Y (2.3)

In 1969, after a publication by Minsky and Seymour (1969), the research area that
covered the Perceptron model was stuck since it was proven that it could not deal with problems
similar to the Exclusive-OR (XOR), shown in Figure 2. These problems were shown to be
unsolvable by any of the classifiers created by the Perceptron model, which can only solve
linearly separable problems.

By adding a third feature to the XOR problem that consists of the logical-and function
(AND), it would be possible to solve the XOR problem using the Perceptron model. This could
be done using an intermediate neuron that computes this input feature. However, by doing so, it
invalidates the learning procedure used by the Perceptron model, since there is no target output
for this intermediate unit. This intermediate neuron was called hidden due to not having a direct

2.3. Artificial neural networks 39

Figure 3 – Example solution to the XOR problem obtained by a feedforward neural network. Different
colours indicates different target outputs.

connection to the network’s output (HENSELER, 1995).

Gains in computers processing capability and the development of the generalised delta

rule (WERBOS, 1974; RUMELHART; HINTON; WILLIAMS, 1988) brought new light into
this research area and allowed the introduction of an intermediate layer of adaptive connections
enabling the method to address previously unsolvable problems.

2.3.2 Feedforward networks

The generalised delta rule (WERBOS, 1974; RUMELHART; HINTON; WILLIAMS,
1988) eliminates the problem faced by the Perceptron when dealing with XOR-like problems by
replacing the target error of hidden neurons with the error gradient in the Lest Mean Squares
(LMS) procedure. This allowed the formulation of the so-called feedforward networks, or
Multilayer Perceptron (MLP), quintessential artificial neural network models (GOODFELLOW;
BENGIO; COURVILLE, 2016). Figure 3 shows a possible solution to the XOR problem obtained
by using a feedforward neural network.

The goal of a feedforward network is to approximate a function f *(·) which maps an
input x ∈ Rn to a class or category y ∈ C , where C is the set of all possible classes of that
application. This mapping y = f (x,w) is defined by the network, who learns the values of the
parameters w ∈ Rn by minimising an error function based on the LMS procedure. This error
function varies depending on if the processing unit is part of a visible or hidden layer.

The “feed-forward” term comes from the fact that information flows through the network
connections from the input x, passing through calculations that define f and reaching the output
y. This is done without any connection being used to give feedback to previous layers. By
including feedback connections the model used changes to a RNN model, which is explained in
Section 2.6.

40 Chapter 2. Fundamental concepts

The back-propagation algorithm (RUMELHART; HINTON; WILLIAMS, 1988) is used
to train the network. It computes the gradients of the error function, allowing the parameters w

to be adjusted in the search for the minimum error. This algorithm uses partial derivatives of the
cost function, with respect to each weight, to know how quickly the cost will change according
to changes made to each weight. It also gives an intuitive interpretation of how the changes made
to the weights will affect the overall behaviour of the network (NIELSEN, 2015).

2.4 Deep learning

In 2006, deep learning or hierarchical learning emerged as one of the main research areas
involving machine learning (HINTON; OSINDERO; TEH, 2006; BENGIO, 2009). With the rise
of the processing capabilities of computers and the growth in the availability of data for training,
techniques that were developed using deep learning concepts had a big impact on many research
areas, like signal and information processing (DENG; YU, 2014). These techniques aim to make
computers learn through experience and to understand the world through a hierarchy of concepts,
in which each concept is defined by the combination of multiple simpler ones.

Even though there is no formal definition of deep learning, all approaches in the area
have as a central idea: the use of nested representations of data. Each approach may define depth
differently, sometimes referring to the number of steps in a graph that describe the computations
necessary to produce the final representation or the minimum number of connections between
representations before achieving the final results.

The main goal of deep learning is to avoid the difficulties of extracting high-level abstract
features from raw data by using layers of features that are not designed by human engineers but
learned from data using general-purpose learning procedures (LECUN; BENGIO; HINTON,
2015). This is done by taking advantage of rises in the amount of available data and computational
capabilities. Deep learning methods are representation learning methods with multiple levels
of representation, which are obtained by composing simple non-linear units that transform
representations starting from the raw input into more abstract representations at higher levels.
Many different deep learning architectures can be used in a supervised or an unsupervised setting.
The currently most used architectures are Convolutional Neural Network (Section 2.5) and
Recurrent Neural Network (Section 2.6).

2.5 Convolutional networks

CNNs are specialised in processing data whose topology is known and that has a grid-like
organisation (GOODFELLOW; BENGIO; COURVILLE, 2016). Examples of data that present
the required characteristics include short time series, that can be represented by a one-dimensional
grid where each sample is obtained after a fixed time window, and images, two-dimensional

2.5. Convolutional networks 41

grids of pixels.

When applied to a coloured image, the input of the convolutional neural network is
composed of a set of matrices that contain the colour channels of the image. Each of these colour
channels is called feature maps. Feature maps are also the name used to refer to the input and
output of each layer of a Convolutional Neural Network. Each feature map represents a specific
feature extracted from each position of the input.

CNNs aim to simulate a set of cells similar to the ones present in the visual cortex,
based on the model proposed by Hubel and Wiesel (HUBEL; WIESEL, 1968), where each
cell is responsible for a region of the visual field, called receptive fields. Receptive fields are
organised to cover all the visual field. Each cell works like a local filter over the input, exploring
local correlations present in natural images. In Hubel and Wiesel (1968), two types of cells
were identified: simple cells, that have a maximum response when the stimulus is similar to a
border, and complex cells, whose receptive field is bigger and activation is locally invariant to
the position of the detected pattern. Both these behaviours are simulated by CNNs.

The name “Convolutional Neural Network” comes from the fact that these networks are
based on artificial neural networks and use the mathematical operation convolution. Due to this,
convolutional neural networks can be defined as artificial neural networks that use convolutions
instead of matrix multiplications.

Convolution is applied to two functions, e.g. x(t) and k(t) for the 1-d case, consisting of
the application of the function k(t), called kernel or filter, on each moment t of x(t), function
known as the input. Convolution is often employed for filtering, for example, denoising by
smoothing the input function via a weighted mean of a neighbourhood for each moment t. The
symbol used to denote a convolution is an asterisk, like exemplified in Equation (2.4).

s(t) = (x* k)(t) (2.4)

It is possible to interpret the convolutions of discrete functions as local matrices multipli-
cation. Any artificial neural network algorithm that uses matrices multiplication and does not
depend on the structural properties of the matrix will work when using convolutions, without the
necessity of any other modifications (GOODFELLOW; BENGIO; COURVILLE, 2016).

In traditional artificial neural networks, the matrices multiplication is used to connect
the network’s input with each output, making every network input influence all of the network’s
output. In convolutional neural networks, each interaction between the network’s input and
output is done locally. This is known as sparse connectivity or sparse weights and is illustrated
by Figure 4, obtained by using a kernel function smaller than the input. This makes it possible to
store a smaller number of parameters, increase the statistical efficiency and reduce the number of
computations. It also allows the network to find important local features.

42 Chapter 2. Fundamental concepts

To enable the use of a kernel function that is smaller than the input, parameter sharing,
also called connected weights, is performed. This concept is illustrated by Figure 5. In a
traditional artificial neural network, each element of the weight matrix is used only once in the
computation of the output, during the multiplication by an element of the input. In a CNN, the
same element of the kernel function is used for each element of the input. This way, instead
of learning a set of parameters for each localisation, the network searches for a single set
of parameters that is applied to every location of the image through convolution. The use of
convolution, combined with parameter sharing, results in an equivariance to translation property,
which means that if the input is modified by a translation operation, the output will be distorted
by the same operation.

v2 v3 v5v4

h1 h2 h3 h5h4

v1

h1 h2 h3 h5h4

v2 v3 v5v4v1

Figure 4 – Sparse connectivity used by convolution neural networks (right) compared to the fully con-
nected layers of a traditional artificial neural network (left). Highlighted in blue are the impact
of a visible unit vi on the the hidden units h j, when using a kernel function k of size 3. Image
based on: (GOODFELLOW; BENGIO; COURVILLE, 2016).

v2 v3 v5v4

h1 h2 h3 h5h4

v1

h1 h2 h3 h5h4

v2 v3 v5v4v1

Figure 5 – Parameter sharing used by convolutional neural networks compared to a weight matrix used by
traditional artificial neural networks. Highlighted in blue is an example of connections that
share the same parameter. In this example, a kernel function of size 3 was used. Image based
on: (GOODFELLOW; BENGIO; COURVILLE, 2016).

When used to process a time series, equivariance to translation makes convolution create
a timeline that shows in what instant each feature is shown in the input. When applied to images,
convolution creates a kind of two-dimensional map (called feature map) that shows where each
feature occurs in the input.

A typical CNN used for pattern recognition in static images is composed by a series
of convolutional layers, activation functions and pooling operators, ending in a classification
module. The three most common layers of data processing are (LECUN; KAVUKCUOGLU;
FARABET, 2010):

(1) Convolutional layer or Filter Bank Layer: receives as input a three-dimensional tensor
containing a set of feature maps. Each feature map is called xi and each of its elements

2.6. Recurrent neural networks 43

xi jk. The output of this layer is also a three-dimensional tensor, y, consisting of another
set of feature maps yl . A kernel function kil connects the input xi to the output yl . This
kernel function is used as a filter and is learnt during the training stage. It is applied using
convolution on the inputs to obtain specific features in all possible positions of the input.
Additionally, to the kernel function, a bias parameter b j is also learnt during the training
stage. Both optimal kernel function and bias parameter are found using Equation (2.5).

yl = bl +∑
i
(kil * xi) (2.5)

(2) Activation Function or Non-Linearity Layer: applies a non-linear activation function
to every position (i jk), for example, a tanh() function or a Rabs : abs(gi · tanh())), where gi

is a trainable gain parameter. In this layer, normalisation functions are also applied to the
data, like subtractive normalisation, divisive normalisation or local contrast normalisation.

(3) Feature Pooling Layer: this layer considers each feature map separately, applying a
pooling function that replaces the output of the layer with summaries of neighbourhoods.
The most popular pooling functions are max PM and average PA, which are usually applied
with a stride (gaps) bigger than one and smaller or equal to the size of the considered
neighbourhood. By doing this, the size of the output is reduced, allowing the network
to receive inputs of different sizes. Also, the application of a pooling function makes
the resulting representations invariant to small translations in the input. When applied
to outputs of separately parametrised convolutions, it allows the representations to learn
which transformations it should be invariant to (GOODFELLOW; BENGIO; COURVILLE,
2016).

Training CNNs as supervised methods is usually done using a stochastic gradient descent
that tries to minimise the difference between the expected output and the one achieved by
network. These gradients are computed by using the back-propagation algorithm (WERBOS,
1974).

2.6 Recurrent neural networks

While feedforward networks and convolutional networks have many restrictions regard-
ing input and output, both accepting only fixed-sized vectors as input and producing a fixed-sized
vector as output and computing the mapping from inputs to outputs using a fixed amount of
steps (KARPATHY, 2015), Recurrent Neural Network (RNN) allow more flexibility by oper-
ating over sequences of vectors. That is, RNNs allow inputs, outputs or both to be composed
by sequential data, i.e. data where observations consist of a sequence and each observation is
allowed to have a different sequence length (GOODFELLOW; BENGIO; COURVILLE, 2016).

44 Chapter 2. Fundamental concepts

The use of RNN models on sequences with variable length are only possible due to
parameter sharing across different parts of the model. If each value of the time index was
designated its own separate parameter, it would not be possible to generalise across different
sequence lengths and different positions in time. This is particularly important in applications
where the important part of a sequence can occur at any arbitrary point of that sequence. The idea
is similar to the parameter sharing used by CNNs (Section 2.5), where the same convolutional
kernel is used multiple times. In RNN models, parameter sharing is achieved by defining each
member of the output as a function of the previous members of the output, all produced using the
same update rule. This approach results in the sharing of parameter through a deep computational
graph (GOODFELLOW; BENGIO; COURVILLE, 2016).

Recurrent neural networks can be created using many different design patterns, two of
the most important are shown in Figure 6. Some of these design patterns, like the one shown in
Figure 6a, are proven to be powerful computational tools since they can process any computable
function by simulating a Turing machine using a finite size network (GOODFELLOW; BENGIO;
COURVILLE, 2016). Forward and back-propagation equations may vary with the chosen design
pattern.

Considering the simplest RNN architecture (Figure 6a) (KARPATHY; JOHNSON; LI,
2015), hidden state vectors h`t are arranged in a two dimensional grid, where t = 1, . . . ,T indicates
time and `= 1, . . . ,L is the layer containing that unit or its depth. h0

t = xt are the units that hold
the input vectors xt and hL

t are the units used to predict the output vector yt . All intermediate
vectors h`t are computed with a recurrence formula based on h`t−1 and h`−1

t (Equation (2.6)),
where all h ∈ Rn.

h`t = tanhW `

(
h`−1

t

h`t−1

)
+b`t (2.6)

W ` is the `-th layer’s parameter matrix with n×2n dimensions and b`t ∈ R is the bias
variable of unit h`t . Parameters are shared through time but may vary between layers.

RNN models use a weak form of coupling (SUTSKEVER; MARTENS; HINTON, 2011)
that links the inputs from the layer below in depth (h`−1

t) and the layer before in time (h`t−1) to
the current unit (h`t). These inputs are transformed and interact additively before being squashed
by a activation function, tanh in this example, applied element-wise. Other models, like the
Long Short-Term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997), include other
multiplicative interactions (KARPATHY; JOHNSON; LI, 2015).

2.6.1 Long Short-Term Memory (LSTM)

Proposed by Hochreiter and Schmidhuber (1997), Long Short-Term Memory (LSTM)
is a variant of the RNN model that can store and retrieve information over long periods of

2.6. Recurrent neural networks 45

(a) (b)

Figure 6 – Two of the most important recurrent neural network design patterns. 6a shows a pattern were
the recurrence occurs in hidden-to-hidden setting while in 6b recurrences occurs from the
output to the hidden layer. Images based on: (GOODFELLOW; BENGIO; COURVILLE,
2016).

time using an explicit gating mechanism and a built-in constant error carousel (KARPATHY;
JOHNSON; LI, 2015). This model also addresses some of the difficulties of training the RNN
model (BENGIO; SIMARD; FRASCONI, 1994). By using the back-propagation algorithm,
the gradients in a RNN either vanish or explode. To alleviate the exploding gradient problem,
clippings at some maximum value of the gradients were used (PASCANU; MIKOLOV; BENGIO,
2012), while LSTMs were designed to address the vanishing gradient problem. This is done
maintaining, not only a hidden state vector h`t , but also a memory vector c`t .

A LSTM decides, at each time step, if it should read from, write to or reset the cell using
explicit gating mechanisms. These are defined by Equations (2.7), (2.8) and (2.9), where the
sigm and tanh functions are applied element-wise. W ` is a 4n×2n weight matrix (n being the
number of cells in the `-th layer) that varies between layers but is shared though time.

Variables i, f and o ∈ Rn are binary vectors that control whether the memory cells will
be updated, reset to zero or if its local state is revealed in the hidden vector, respectively. These
vectors are smoothed by a sigmoid function ranging between zero and one, keeping the model
differentiable. g ∈ Rn ranges from −1 to 1 and is used to modify the contents of memory cells
c. This modification is done additively and allows gradients on the memory cells c to flow
backwards through time until the flow is interrupted by a multiplicative interaction of an active
forget gate.

i
f
o
g

=

sigm
sigm
sigm
tanh

W `

(
h`−1

t

f `t−1

)
(2.7)

c`t = f ⊙ c`t−1 + i⊙g (2.8)

46 Chapter 2. Fundamental concepts

Figure 7 – General structure of an autoencoder, where x is the input of the network which is mapped to the
output (reconstruction) r going through the internal representation h. The connection between
the input and the representation is done through function f , called encoder. Another function is
used to map the representation to the reconstruction, this function g is called decoder. Image
based on: (GOODFELLOW; BENGIO; COURVILLE, 2016).

h`t = o⊙ tanh(c`t) (2.9)

2.7 Autoencoders

An autoencoder is an unsupervised artificial neural network architecture whose main goal
is to copy its input to its output (GOODFELLOW; BENGIO; COURVILLE, 2016). It can be seen
as an identity function estimator, that is, given a dataset, the autoencoder tries to approximate a
non-trivial identity function by comparing its input with its output and minimising the differences.
Figure 7 shows an example of the general structure used on autoencoders, the input x is mapped
to the output r, called reconstruction, by passing through an internal representation h.

These networks can be divided into two parts: an encoder function h = f (x) and a
decoder function r = g(h). The encoder function f is the result of training hidden layers that
describe a code used to represent the input. To avoid overfitting the training samples and finding
the trivial identity function, autoencoders are designed to be unable to learn to copy perfectly the
input to the output. This is done by forcing the model to prioritise which aspects of the input
should be copied. Traditionally, autoencoders were used for dimensionality reduction and feature
learning and, more recently, because they were linked to latent variable models, generative
modelling (GOODFELLOW; BENGIO; COURVILLE, 2016).

There are many different ways used to force autoencoders away from the trivial solution
to the task of copying the input on to the output of the network. One of these ways is to constrain
h to have dimension smaller than x. This makes the generated code capture the most salient
features from the training data. Autoencoders that use this rule are called undercomplete. During
the learning process, a loss function L(x,g(f (x))) that penalises g(f (x)) for being different from
x is minimised.

If the decoder function is linear and L is the mean squared error, a subspace very similar
to the one obtained by the Principal Component Analysis (PCA) method is learned by an under-
complete autoencoder. When using nonlinear encoder and decoder functions, the autoencoder
can learn to perform the copying task without learning anything useful about the data. This
occurs when the capacity of the autoencoder is allowed to become too great (GOODFELLOW;

2.8. Generative adversarial networks 47

BENGIO; COURVILLE, 2016).

Regularised autoencoder models were proposed based on the idea that, by choosing
the code dimension and the capacity of the encoder and decoder functions according to the
distribution to be modelled, any architecture of autoencoder would be successfully trained. These
models use loss functions that encourage other properties, like sparsity of the representation,
smallness of the derivative of the representation and robustness to noise or missing inputs, to be
learned by the model, in addition to copying the input to the output. Regularised autoencoders
will learn useful information about the data distribution even if the model has the ability to
learn the trivial identity function. Whenever an autoencoder’s code dimension is higher then the
dimension of the original data, it is called overcomplete autoencoder. Overcomplete autoencoders
require regularisation to avoid learning the trivial identity function.

2.8 Generative adversarial networks

Generative Adversarial Network (GAN) (GOODFELLOW et al., 2014) explore the idea
of training two deep neural networks in an adversarial manner, that is, by making them compete
against each other. In general, GANs try to learn how to mimic a certain dataset by learning
about its distribution.

The first important characteristic of GANs is that it is a generative approach. This differs
from most of the common machine learning algorithms, which use a discriminative approach.
The main objective of discriminative algorithms is to, given features that describe the input data,
try to predict to which label or category that example belongs to. This means that discriminative
algorithms try to model the boundary between classes, which is done by finding a mapping f

from X , the feature space for the input data, and Y , the label space, f : X −→ Y .

On the other hand, generative algorithms try to generate new examples from the input
data by modelling its probability distribution. For GANs, this is done by mapping a known
distribution to the input data distribution, while also modelling this distribution’s probability
density function.

The second characteristic of GAN models is the adversarial approach. When training
a GAN two neural network models have to be defined: a generator and a discriminator. The
generator is responsible for learning the mapping g from N , a known probability distribution
(usually a standard Gaussian distribution or a uniform distribution), to X , the input data
probability distribution. The discriminator will function as an estimator of the input’s probability
density function. This way, the adversarial training occurs by challenging the generator to confuse
the discriminator, while the discriminator tries to differentiate between real input samples and
generated samples. This is done by using loss functions for the generator and the discriminator
that oppose themselves, as seen in Equations 2.10 and 2.11, where L (G,z) is the generator loss,
L (D,x,G,z) is the discriminator loss, D and G are respectively the discriminator and generator

48 Chapter 2. Fundamental concepts

functions, z are samples from a known probability distribution pz) and x are samples of real data.

L (G,z) = maxEz∼pz(z)[logD(G(z))] (2.10)

L (D,x,G,z) = maxEx∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2.11)

The main challenge faced when training GANs is called mode collapse. Most real-world
data distributions are complex and multimodal, which means that the probability distribution
that describes the data has multiple “peaks” (modes) where different sub-groups of samples are
concentrated. A mode collapse happens when the GAN converges to a model that is able to
reproduce only a small number of modes. For example, if the generator learns that generating
samples from a single mode is effectively confusing the discriminator to think they are real
samples, the discriminator will then try to counter this effect by considering a different mode as
containing only real samples. This will lead to generator and discriminator alternating between
modes indefinitely, never rewarding the generator to cover more than a few modes. Mode collapse
is usually diagnosed by analysing the variety of the output samples of the generator since it
causes the generator to output a very low variety of samples.

2.8.1 Deep Convolutional GAN (DCGAN)

Deep Convolutional GAN (DCGAN) (RADFORD; METZ; CHINTALA, 2016) estab-
lished a set of guidelines for training GANs using convolutional network architectures. These
guidelines aim to stabilise the adversarial training and improve the diversity and realism of the
generated samples.

The first suggestion is to replace deterministic spatial pooling functions (e.g. max-
pooling) with strided convolutions, similar to what is done by all convolutional net (SPRIN-
GENBERG et al., 2015). This allows the network to learn its own spatial down-sampling. A
more stable training was achieved by replacing pooling layers with strided convolutions for the
discriminator and fractional-strided convolutions for the generator.

Another way to improve the DCGAN training is to eliminate fully connected layers used
on top of convolutional features. Also, the authors state that using batch normalisation (IOFFE;
SZEGEDY, 2015) stabilises the training procedure by normalising the input of each unit to have
zero mean and unit variance. This helps solve some problems due to poor initialisation and allow
the gradients to flow deeper into the model, which proved necessary when using deep generators
by preventing it from collapsing all generated samples to a single point. It is important to notice
that batch normalisation should not be applied to the generator output layer or the discriminator
input layer since it causes model instability when applied to all layers.

2.8. Generative adversarial networks 49

Lastly, the selection of appropriate activation functions has a big impact on GAN’s
training stability and the achieved results. Layers belonging to the generator should usually use
ReLU activation (NAIR; HINTON, 2010), except for the output layer that has achieved better
results using the tanh function. On the other hand, leaky rectified activation (MAAS; HANNUN;
NG, 2013; XU et al., 2015) are better for discriminator layers and help improve the overall
results.

2.8.2 Wasserstein GAN (WGAN)

Wasserstein GAN (WGAN) (ARJOVSKY; CHINTALA; BOTTOU, 2017) propose a
change in the loss function of traditional GANs by using an approximation of the Wasserstein
distance, also known as Earth Mover’s distance, which measures the distance between two
probability distributions. This distance is proven to be differentiable almost everywhere, allowing
the discriminator, in this case, called critic (because it does not explicitly classify the samples into
real or fake), to reach convergence before updating the generator. This guarantees more accurate
gradients used for back-propagation. It is important to notice that training the discriminator to
convergence using traditional GANs is not possible since it would lead to vanishing gradients.

Such change to the loss function improves the stability of the GAN training and has
shown to achieve a certain level of correlation between the discriminator loss and the perceptual
quality of the generated samples. This is important since, for traditional GANs, it is very difficult
to judge whether training is progressing as expected without a thorough analysis of the generated
samples. However, to ensure certain required conditions for the WGANs to work it is necessary
to perform weight clipping to a small fixed range. To avoid weight clipping, improved WGANs
training (GULRAJANI et al., 2017) has proposed the use of gradient penalty.

2.8.3 Boundary equilibrium GAN (BEGAN)

Boundary Equilibrium GAN (BEGAN) (BERTHELOT; SCHUMM; METZ, 2017) is a
variation of traditional GANs inspired by Energy Based GAN (EBGAN) (ZHAO; MATHIEU;
LECUN, 2016) that aims at improving the stability of the adversarial training by using an
autoencoder as the discriminator. This modification is accompanied by a change to the loss
function, which now measures the quality of reconstruction achieved by the discriminator on
real and generated images. The reconstruction loss is the error associated with reconstructing
examples using an autoencoder, in this case, the discriminator.

BEGANs assume that matching the distributions of the reconstruction losses can be a
suitable alternative to matching the data distributions. The loss function used from training is
based on this idea and derived from the Wasserstein distance between the reconstruction losses
of real and generated data. An equilibrium term to balances the training of the discriminator
and the generator is also included in the loss function to avoid needing to find this equilibrium

50 Chapter 2. Fundamental concepts

manually.

The adversarial part of training consists of the discriminator learning how to reconstruct
real images continuously better while also increasing the reconstruction loss for generated images.
The generator is trained to minimise the reconstruction loss outputted by the discriminator for
generated samples.

2.9 Concluding remarks
This chapter explained several fundamental concepts and methods required to understand

methods typically used in machine learning, feature extraction and representation learning
techniques. These concepts are important in the context of the methods presented in Chapter 3
and to better understand the experiments shown in Chapters 4, 5 and 6.

51

CHAPTER

3
SPATIO-TEMPORAL REPRESENTATION

LEARNING

3.1 Opening remarks

Video processing has been a topic of interest in computer science for years and has
addressed many different problems, such as action recognition (HERATH; HARANDI; PORIKLI,
2017; WANG, 2018), action localisation (WEINZAEPFEL; HARCHAOUI; SCHMID, 2015;
SHOU; WANG; CHANG, 2016), anomaly detection (POPOOLA; WANG, 2012; SABOKROU
et al., 2018), scene recognition (SANDE; GEVERS; SNOEK, 2010; PROTASOV et al., 2018),
among others. The proposed solutions for many of these problems have one stage in common:
feature extraction. Feature extraction is considered one of the most important steps in a machine
learning pipeline (BENGIO; COURVILLE; VINCENT, 2013).

Many classical image feature extraction methods, which encode spatial information, were
extended for videos, that is, to also include temporal information. These methods were initially
data-independent and designed for a small set of problems or datasets. The features extracted by
these methods are known as hand-crafted features (Section 3.2). Data-driven methods, whose
objective is to learn which are the relevant features based on a training dataset, are discussed in
Section 3.3.

3.2 Hand-crafted spatio-temporal features

Hand-crafted features are manually designed, that is, they are not directly influenced
by the data. Designing hand-crafted features often require expensive human labour and rely on
expert knowledge about the application or dataset for which it will be used. This incorporated
knowledge usually causes hand-crafted features not to generalise well to different applications.
When dealing with video processing, incorporating temporal information into the feature vector

52 Chapter 3. Spatio-temporal representation learning

is one of the main challenges of feature extraction.

Many of the spatio-temporal feature extraction methods derive from image descrip-
tors which where extended to include a temporal dimension. For example, Laptev and Linde-
berg (2003) proposed Spatio-Temporal Interest Points (STIPs) as an extension of the Harris
corner detectors (HARRIS; STEPHENS, 1988); SIFT (LOWE, 2004) and HOG (DALAL;
TRIGGS; SCHMID, 2006) inspired SIFT-3D (KLASER; MARSZAŁEK; SCHMID, 2008) and
HOG3D (SCOVANNER; ALI; SHAH, 2007), both proposed for action recognition. Other ap-
proaches try to combine local appearance and motion information extracted by image descriptors,
such as HOG, HOF and MBH based on spatio-temporal interest points organised in a dense grid
or around dense point trajectories. These features are then encoded to produce a fixed-size feature
vector that describes the entire video. The current state-of-the-art method for spatio-temporal
hand-crafted feature extraction from video is the Improved Dense Trajectories (IDT) (WANG;
SCHMID, 2013) method encoded by fisher vectors (ONEATA; VERBEEK; SCHMID, 2013).
This method is detailed in Section 3.2.1.

3.2.1 Dense trajectories

One of the most popular ways of representing videos is by associating local features with
space-time interest point detectors (KARPATHY et al., 2014). Combined in a bag-of-features
representation, local features have achieved high-quality results in action recognition. However,
space and time domains in videos have different characteristics, which makes it more intuitive
to treat each of these dimensions in different ways instead of using interest point detection in a
joint three dimensional space (WANG et al., 2011).

Motivated by the results achieved by the use of motion information in video for action
recognition (MESSING; PAL; KAUTZ, 2009; SUN et al., 2009), the method proposed by Wang
et al. (2011) uses an efficient approach to extract trajectories from videos. This method also
takes advantage of the fact that the results are further improved by using dense over sparse
sampling (WANG et al., 2009). The extracted trajectories are computed by tracking densely
sampled points using optical flow fields while imposing global smoothness constrains to improve
their robustness to large displacements.

To compute dense trajectories, feature points are sampled on a grid spaced by W pix-
els and tracked in multiple spatial scales, separately. The value of W = 5 was empirically
defined (WANG et al., 2011) and is used with eight different spatial scales, each one defined
by using a factor of 1√

2
. The tracking of each point Pt = (xt ,yt) at frame t is done to the next

frame t +1 by using median filtering in a dense optical flow field ω = (ut ,vt). Each point Pt+1 is
defined by using the following equation:

Pt+1 = (xt+1,yt+1) = (xt ,yt)+(M *ω)|(x̄t ,ȳt), (3.1)

3.2. Hand-crafted spatio-temporal features 53

Figure 8 – Pipeline used to extract feature vectors using the dense trajectory method. Adapted from Wang
et al. (2011).

where M is the median filtering kernel and (x̄t , ȳt) is the rounded position of (xt ,yt). The rounded
position is used to avoid problems with the optical flow tracking a point into a subpixel region.
The trajectories are created by concatenating points of subsequent frames. After the dense optical
flow field is calculated, points can be tracked densely without any additional cost. The algorithm
proposed by Farnebäck (2003) is used to extract dense optical flow.

To prevent trajectories from drifting from their initial location during tracking, the length
of each trajectory is limited to L frames. That is, after L frames, the trajectory is removed from the
tracking process. The existence of a trajectory in each cell of the grid is verified for every frame,
assuring dense coverage of the video. If there are no tracked points in a W ×W neighbourhood, a
feature point is sampled and included in the tracking process. L was empirically defined by Wang
et al. (2011) as 15 frames. Figure 8 illustrates the pipeline used to compute dense trajectories
representations.

Image areas without any structure make it hard to track points. To avoid such problems,
when a feature point is sampled, the smallest eigenvalue of its autocorrelation matrix is compared
to a threshold. Whenever this eigenvalue is smaller than the threshold, this point is not included
in the tracking process. Trajectories with sudden large displacements are assumed to be wrong
and are also removed.

Dense trajectories also contain information about local motion patterns. This information
can be described by a sequence S = (∆Pt , . . . ,∆Pt+L−1) of displacement vectors ∆Pt = (Pt+1−
Pt) = (xt+1− xt ,yt+1− yt). A normalisation by the sum of the magnitudes of the displacement
vectors is then applied (Equation (3.2)). The resulting vector is called trajectory descriptor.

S′ =
(∆Pt , . . . ,∆Pt+L−1)

∑
t+L−1
j=t

∥∥∆Pj
∥∥ (3.2)

To take advantage of the motion information in dense trajectories, descriptors are com-
puted within a space-time volume around the trajectory of size N×N pixels and L frames. This
volume is divided into a spatio-temporal grid of size nσ ×nσ ×nτ , embedding structure informa-
tion into the representation. By default, these parameters are set to N = 32,nσ = 2,nτ = 3 (WANG
et al., 2011). These values were found based on cross validation performed on the training set of

54 Chapter 3. Spatio-temporal representation learning

the Hollywood2 Actions dataset (MARSZAŁEK; LAPTEV; SCHMID, 2009).

The local descriptors HOG (Section 3.2.1.1), HOF (Section 3.2.1.2) and MBH (Sec-
tion 3.2.1.3) were used with the dense trajectory method in its original paper (WANG et al.,
2011). Both HOF and MBH benefit from the optical flow computed to extract dense trajectories,
making the computation process more efficient. Due to the its robustness to camera motion,
Motion Boundary Histogram (MBH) (DALAL; TRIGGS; SCHMID, 2006) achieved the best
results when used to extract features with dense trajectories.

To improve these results, Wang and Schmid (2013) estimates the global background
motion by assuming that two consecutive frames are related by a homography (SZELISKI,
2006). This is true since, in most cases, global motion between two consecutive frames is small.
The homography is estimated by finding correspondences between two frames and then using
RANSAC (FISCHLER; BOLLES, 1981), which allows rectification of the image to remove
camera motion. When compared to the original optical flow, the rectified version is capable of
suppressing background camera motion, enhancing foreground moving objects.

To find the correspondence between two frames Speeded-Up Robust Features (SURF)
features (BAY; TUYTELAARS; GOOL, 2006) are extracted and then matched based on the
nearest neighbour rule. This is combined with an optical flow estimation for salient feature points
by thresholding the smallest eigenvalue of the autocorrelation matrix (SHI; TOMASI, 1994).
These two approaches are complementary, given that one focuses on blob-type structures and the
other on corners and edges.

The results obtained by using dense trajectories improves consistently when cancelling
out camera motion due to the removal of trajectories created by camera motion (WANG;
SCHMID, 2013). These trajectories are identified by thresholding the displacement vectors of
each trajectory in the warped flow field. Also, motion descriptors benefit from this, as shown by
the degradation of the HOF descriptors in the presence of camera motion (WANG; SCHMID,
2013).

Furthermore, the use of a human detection method to remove matches from human
regions is proposed as a way to improve camera motion estimation (WANG; SCHMID, 2013).
The human detector is used as a mask to remove feature matches inside the bounding boxes
when estimating homography. However, homography fails to fit the background, despite human
detection, when the background is represented by two planes, one of which is closer to the
camera.

Since human detection methods do not work perfectly, missing humans due to pose or
viewpoint changes, all bounding boxes obtained by the human detector are tracked. This is done
by propagating the detection made to the next frame using the average flow vector. Bounding
boxes are tracked for at most 15 frames and tracking is stopped if a 50% overlap with another
bounding box occurs.

3.2. Hand-crafted spatio-temporal features 55

Due to the number of features extracted by the dense trajectories method and that videos
in a single dataset may have different lengths, a feature encoding technique must be used to
reduce the dimensionality of the feature vectors. The most used methods for feature encoding are
Bag-of-Features (BOF) (NOWAK; JURIE; TRIGGS, 2006) and Fisher Vector (FV) (SÁNCHEZ
et al., 2013). In order to capture the spatio-temporal layout of the features, a concatenation of
several histograms can be used, each one computed over several space-time cells overlaid on the
video.

BOF constructs a codebook based on feature vectors with K quantisation cells. This
is done by clustering a subset of the feature vectors of the training set using the k-means
algorithm (MACQUEEN, 1967). Then, each descriptor is assigned to their closest vocabulary
word based on Euclidean distance, resulting in histograms of visual word occurrences which are
used as representations for each video. Multiple initialisations of the k-means algorithm, keeping
the result with the lowest error, can be used to increase precision.

Fisher Vectors extends the Bag-of-Visual-Words (BOV) representation (SIVIC; ZISSER-
MAN, 2003), which is based on the quantisation of the local descriptor space using off-line
k-means clustering on a large collection of local descriptors. FVs encode for each quantisation
the number of assigned descriptors and their mean and variance along each dimension, resulting
in K(2D+ 1) dimensions, where K is the number of quantisation cells and D the number of
dimensions in the descriptor.

In FV representations, each local descriptor is assigned in a weighted manner to multiple
clusters by using the posterior component probability given the descriptor. Principal Compo-
nent Analysis (PCA) (JOLLIFFE, 2002) can be used to reduce the dimensionality before FV
encoding. FV has been proven to be among the most effective encoding methods for object
recognition (CHATFIELD et al., 2011).

Oneata, Verbeek and Schmid (2013) proposes the use of FV with Spatial Pyramid
Matching (SPM) (LAZEBNIK; SCHMID; PONCE, 2006) as an alternative to BOF histograms to
encode the features extracted by the dense trajectories method, obtaining state-of-the-art results
in action recognition and complex event recognition, while using representations with fewer
dimensions.

3.2.1.1 Histogram of Oriented Gradients (HOG)

Based on evaluating well-normalised local histograms of image gradient orientations in a
dense grid, Histogram of Oriented Gradients (HOG) (DALAL; TRIGGS, 2005) takes advantage
of the distribution of local intensity gradients or edges directions to characterise the local object
appearance and shape. This is done by dividing the image into small connected regions, called
cells, in which a local histogram of gradient directions or edge directions is computed over all
pixels. The final representation is obtained by combining the histograms computed in all cells.
HOG descriptors are particularly suited for human detection (DALAL; TRIGGS, 2005).

56 Chapter 3. Spatio-temporal representation learning

Contrast-normalisation can be applied to achieve better results due to invariance to
illumination. This can be done by dividing the image into larger spatial regions, called blocks

and accumulating a measure of local histogram “energy” that is then used to normalise all
cells included in the block. These normalized descriptors are the so-called HOG descriptors.
These descriptors are capable of capturing gradient structures characteristic of local shapes by
using local representations with an easily controllable degree of invariance to local geometric
and photometric transformations. This means that the resulting descriptors are robust to local
translations or rotations that are smaller than the local spatial or orientation bin size.

To extract HOG descriptors from an image, firstly, gradient values must be computed.
This is most commonly done by filtering the colour or intensity data of the image using the
one-dimensional centred point discrete derivative mask in the horizontal ([−1,0,1]) and vertical
directions ([−1,0,1]T). Then, the image is divided into small cells of rectangular (R-HOG) or
circular shape (C-HOG). Each pixel contained by a cell is used in a weighted manner to create
an orientation-based histogram. This histogram is created for each cell and its bins are evenly
spread over the orientation of the gradients. The range of the orientation can be defined over 0 to
180 degrees or over 0 to 360 degrees, depending on if the gradient is “signed” or “unsigned”.
The contribution of a pixel to each bin of the histogram is weighted based on the magnitude of
the gradient or some function of this magnitude.

To increase the robustness of the descriptors to illumination and contrast changes, gradient
strengths are locally normalized by grouping cells together into blocks. Some of the most
common methods used for normalisation are: `2-norm (Equation 3.3), hysteresis-based `2

normalisation (LOWE, 2004) or `1-sqrt (Equation 3.4), where ν is the non-normalized vector
containing all histograms of a given block, ‖∆ν‖k is its k norm for k = 1,2 and e is a small
constant.

f =
ν√

‖∆ν‖2
2 + e2

(3.3)

f =
√

ν

(‖∆ν‖1 + e)
(3.4)

Blocks are typically allowed to overlap, which means that a cell can contribute to more
than a block, and, therefore, to the final descriptor. The size and shape of the cells and blocks
and the number of bins in each histogram are hyperparameters set by the user.

3.2.1.2 Histogram of Optical Flow (HOF)

While the Histogram of Oriented Gradients (HOG) descriptor focuses on describing the
local appearance, Histogram of Optical Flow (HOF) (DALAL; TRIGGS; SCHMID, 2006) main
goal is to extract information based on the local motion at each frame. The steps used to compute
HOF descriptors are very similar to the ones used to extract HOG descriptors.

3.3. Spatio-temporal representation learning 57

Firstly, optical flow displacements for both, horizontal and vertical directions are com-
puted. Then, for each small spatial divisions (cells), displacements are combined into an orienta-
tion histogram using their magnitudes as weights. Afterwards, cells are aggregated into larger
overlapping spatio-temporal regions (blocks), for which a normalisation technique is applied.
Normalised histograms are concatenated resulting in HOF descriptors.

3.2.1.3 Motion Boundary Histogram (MBH)

Motion Boundary Histogram (MBH) descriptors were proposed by Dalal, Triggs and
Schmid (2006) for human detection in video. Its main goal is to encode the relative motion be-
tween pixels. These descriptors were later used for other purposes like action recognition (WANG
et al., 2013). MBH descriptors are obtained by computing the derivatives (Ixx,Ixy,Iyx,Iyy) for the
horizontal (Ix) and vertical (Iy) components of the optical flow separately, where Ixy =

d
dyIx is

the y-derivative of the horizontal (x) component of optical flow. Iw = (Ix,Iy) denoting the two-
dimensional flow image (w = (x,y)). Spatial derivatives are computed by using one-dimensional
centred point discrete derivative mask in the horizontal ([−1,0,1]) and vertical directions
([−1,0,1]T).

To extract MBH descriptors, both flow components Ix and Iy are treated as independent
“images”, whose gradients are computed separately. Then, after diving the images into small
regions (cells), their corresponding gradient magnitudes and orientations are used as weighted
votes into a local orientation histogram, similar to what is done to compute the HOG descriptor.
Normalisation is done by using larger overlapping regions of the image (blocks). The most
common method of normalisation for MBH descriptors is the hysteresis-based `2 normalisa-
tion (LOWE, 2004). MBH descriptors are the result of the concatenation of the histograms
obtained from each cell of each optical flow component.

3.3 Spatio-temporal representation learning

Representation learning methods aim to discover automatically, i.e. directly from raw
data, which are the relevant representations (features) for given task (BENGIO; COURVILLE;
VINCENT, 2013; LECUN; BENGIO; HINTON, 2015). The recent increase in processing capa-
bilities of CPUs and GPUs, combined with the growth in data availability, allowed representation
learning algorithms, such as deep learning, to excel in different areas of machine learning, espe-
cially computer vision. In general, features learnt from data were shown to achieve better results
than the ones that are manually designed (GOODFELLOW; BENGIO; COURVILLE, 2016).
Representation learning also allows machine learning systems to adapt rapidly to new tasks,
reducing the need for human intervention, since features extracted by representation learning
methods tend to generalise well to different applications.

Deep learning methods have achieved state-of-the-art performance in many different

58 Chapter 3. Spatio-temporal representation learning

areas such as natural language processing (YOUNG et al., 2018), speech recognition (AMODEI
et al., 2016) and image processing (DRUZHKOV; KUSTIKOVA, 2016; LITJENS et al., 2017).
Representation learning from videos is considered one of the natural continuations to the devel-
opment of deep learning algorithms (LÄNGKVIST; KARLSSON; LOUTFI, 2014). However,
when applied to video processing the benefits of using deep learning are not as clear (TRAN et

al., 2018). The main challenges faced when using deep learning methods for video tasks are: (1)
the computational costs involved in processing videos since each video contains hundreds or
even thousands of images; (2) video duration tend to vary a lot even when dealing with specific
tasks; (3) the event of interest can occur in a very short time window, that is, the number of
frames that portray the event of interest can be significantly smaller then the total number of
frames in a video; and (4) camera motion.

Many different approaches were used to incorporate temporal information into the repre-
sentations learnt by deep learning methods while dealing with the aforementioned challenges.
We discuss the most commonly used approaches on Sections 3.3.1 and 3.3.2.

3.3.1 Temporal information fusion

Temporal information fusion consists of combining the spatial information learnt by the
network over the temporal dimension. The most used methods of temporal information fusion are:
concatenation of the output of multiple single-frame streams (KARPATHY et al., 2014); temporal
pooling (KARPATHY et al., 2014; NG et al., 2015); temporal convolutions (KARPATHY et al.,
2014); and recurrent neural networks (NG et al., 2015; MONTES et al., 2016).

The first approach (Section 3.3.1.1) feeds a second network with the concatenation of the
output of multiple single-frame networks (usually with shared parameters). This second network
needs, then, to assess temporal information by comparing the concatenated features. The second
approach (Section 3.3.1.2) uses pooling operations on the temporal dimension to combine the
spatial features learnt by the previous layers of the network. When applied to neural networks,
pooling can be used as a layer, which allows for temporal information to be processed at different
depths in the network. Depending on where it is applied, the resulting feature vector will have
different characteristics.

The third approach (Section 3.3.1.3) extends convolution to include the temporal dimen-
sion by using 3-dimensional kernels that capture short temporal information which is then slowly
fused as the information is passed to the following layers. This way, higher layers in the network
have access to more global information. The forth approach (Section 3.3.1.4) leverages recurrent
networks to combine the temporal information learnt by CNNs from single or multiple frames.
This is similar to the first approach, however, instead of concatenating the outputs of multiple
single-frame networks, these feature vectors are passed to a recurrent network as a sequence.

3.3. Spatio-temporal representation learning 59

3.3.1.1 Fusion by concatenation

Fusion by concatenation consists of using a network to process each frame (or time-step,
for non-video problems) and then passing the concatenation of the resulting feature vectors to
another network, which tries to infer temporal information by comparing the representations
extracted from each time-step. This approach was used in Karpathy et al. (2014) where a
single fully convolutional network was used to extract spatial information from each frame. The
resulting feature vectors were concatenated and passed through a set of fully connected layers,
whose output indicates the predicted class for the video. The main drawbacks from using this
method are that it requires the fusion to occur over a fixed-size temporal window and it can
be computationally expensive depending on the size of the feature vector and the length of the
temporal window used.

3.3.1.2 Temporal pooling

Temporal pooling was commonly applied to bag-of-words representations. In that context,
image-based and/or motion features are computed for every frame of a video, the produced
features are then quantised and pooled across time to produce a single feature vector to represent
a clip (a part of a longer video) or an entire video (NG et al., 2015). The same can be done when
working with neural networks by using a pooling layer. This allows for pooling to be applied
at different depths in the network. When applied after convolutional layers, pooling is able to
maintain spatial information. If applied at higher (fully connected) layers, pooling combines
high-level information learnt for each time-step (NG et al., 2015).

Another option is to apply pooling to smaller temporal slices at lower layers in the
network and then later use another pooling operation that combines the information learnt from
these temporal slices to generate a single feature vector. This approach makes the network
group temporally local features before combining high-level information from a high number
of frames (NG et al., 2015). However, pooling does not consider the order in which the feature
vectors are organised, which means that shuffling the frames before passing them to the network
would result in the same final descriptor.

Ng et al. (2015) investigated the previously mentioned architectures and different pooling
operations. They state that max-pooling achieves better results when compared to average-pooling
and pooling performed by a fully connected layer. This occurs due to a large number of gradients
generated by both average-pooling and a fully connected layer, while max-pooling creates sparser
updates which help the network learn faster.

3.3.1.3 Temporal convolution

Two-dimensional convolutional layers receive two-dimensional feature maps as inputs
and compute features by convolving two-dimensional kernels on both dimensions. These layers
are commonly used on images where both dimensions are spatial. When dealing with videos, a

60 Chapter 3. Spatio-temporal representation learning

third (temporal) dimension exists and it is desirable to include such dimension in the computa-
tions in order to capture temporal information encoded in consecutive frames (BACCOUCHE
et al., 2011; JI et al., 2013). In this case, 3-dimensional kernels are convolved over a cube
formed by stacking multiple contiguous frames. That way, the feature maps produced by 3D
convolutional layers are connected to multiple frames in the previous layer, allowing the network
to capture temporal information. By using 3D convolutional layers, the network is capable of
slowly fusing temporal information throughout the network, such that the higher the layer is
positioned in the network, the more global is the information it receives (both spatially and
temporally) (KARPATHY et al., 2014).

Karpathy et al. (2014) used 3D convolution on the first three layers of the network to
slowly fuse temporal information over 10 frames. Tran et al. (2015) experimented with different
kernel sizes for 3D convolution and found empirically that 3×3×3 kernels achieve the best
results among the tested configurations. They also show that 3D CNNs (also known as C3D)
are good feature learning methods that capture both appearance (spatial) and motion (temporal)
information.

These networks are generally composed by 3D convolutional and 3D pooling layers
followed by few fully connected layers. By using deconvolutions, Tran et al. (2015) show that
C3Ds start by focusing on spatial information for the first few frames and then tracks salient
motion in subsequent frames. Their experiments use as input blocks of 16 frames per video clip.
Varol, Laptev and Schmid (2018) extends these architectures by increasing the number of input
frames up to 100 and show that increasing the temporal coverage of the convolutions helps the
network achieve better results.

Tran et al. (2018) introduces Mixed Convolutional Network (MC) which use both 3D
and 2D convolutions as part of residual blocks. MCs start by using 3D convolutional blocks
which are followed by 2D blocks. The reason why 3D convolutions are used at the start of the
network is that motion modelling is considered to be a low or mid-level operation, while spatial
reasoning is performed over the motion features. The opposite was also analysed and was called
“Reversed” Mixed Convolutional Network (rMC).

The biggest drawback of using C3Ds is their computational cost since the model size
suffers a quadratic growth when compared to traditional CNNs (QIU; YAO; MEI, 2017), and
the fact that the input needs to have a fixed size, including for the temporal dimension. Fixed
length videos are not common in real-world datasets. This fact makes it necessary to classify
smaller slices of the video and combine the predictions made for each slice to achieve a full video
prediction. It also hampers the ability of the network to learn long-term temporal information,
since only a limited number of frames can be passed to the network. Thus, an approximation of
3D convolutional layers was proposed by using two separate layers: a spatial 2D convolution and
a temporal 1D convolution (QIU; YAO; MEI, 2017; TRAN et al., 2018). This approximation
reduces the model size significantly making it possible to create much deeper architectures,

3.3. Spatio-temporal representation learning 61

(a) P3D-A / R21D (b) P3D-B (c) P3D-C (d) R3D

Figure 9 – Pseudo-3D, R21D and R3D block architectures. Images based on Qiu, Yao and Mei (2017).

which have been shown to improve results (BALLAS et al., 2015).

Qiu, Yao and Mei (2017) proposes a family of bottleneck residual blocks that takes
advantage of this approximation. These blocks are called Pseudo-3D (P3D) blocks. Three
different P3D block architectures are used in their proposed network. The first block (P3D-A)
stacks a spatial and a temporal layer sequentially. The second possibility (P3D-B) is to connect
both layers in parallel, granting them both a direct connection to the output of the block. The
last proposed option (P3D-C) is a compromise between the previous blocks, that is, while the
input of the temporal layer is the output of the spatial layer, the spatial layer also has a direct
connection to the output of the block.

A similar architecture is proposed by Tran et al. (2018). However, their architecture is
homogeneous (with a single block architecture). The so-called R21D convolutions follow an
organisation similar to P3D-A blocks, but without using bottleneck layers. Also, R21D blocks
can be designed to match the number of parameters on C3D layers. The architectures of these
blocks are shown in Figure 9. Traditional three-dimensional convolutions organised into residual
blocks (R3D) are also tested by Tran et al. (2018).

3.3.1.4 Recurrent network

Recurrent layers, specially LSTM layers, have been used in different types of networks
designed for video processing. In this section, we will discuss their use to fuse information learnt
by other types of layers (usually, convolutional layers) that appear earlier in the network. The
main motivation behind using recurrent networks is that the same operation should be applied at
time-step in order to propagate information to the next time-step since the physics of the world
remains the same regardless of the input (SRIVASTAVA; MANSIMOV; SALAKHUDINOV,
2015).

Ng et al. (2015) consider a recurrent network (5-layer LSTM network) as a replacement
to the max-pooling layer. This change causes the network to consider multiple CNN activation
as a sequence, which allows it to learn from variations between frames instead of treating
the information as a bag-of-features without any particular order. This is interesting from the

62 Chapter 3. Spatio-temporal representation learning

Figure 10 – LSTM autoencoder architecture proposed by Srivastava, Mansimov and Salakhudinov (2015)
which performs reconstruction and prediction simultaneously.

video processing perspective since frame order is relevant. The recurrent network is followed
by a softmax classifier (shared at every time-step). In a similar manner, Montes et al. (2016)
combine a pre-trained C3D network with LSTM layers as a way to learn both short and long-
term temporal information. A softmax classifier is used to obtain predictions at each time-step.
These predictions are then averaged to obtain full video predictions. Both of the mentioned
architectures are capable of performing recognition and localisation tasks since the network
outputs predictions for each input (frames or video clips).

Srivastava, Mansimov and Salakhudinov (2015) uses LSTM networks to fuse represen-
tations extracted using a pre-trained 2D CNN in an unsupervised manner. To achieve this, an
autoencoder setting is used, with a single layer LSTM network (encoder) is used to encode the
fixed-size representation and another (decoder) is used either to reconstruct the input or to predict
future time-steps. A combination of both, input reconstruction and future time-step prediction, is
also presented by using two decoder networks. This approach is also used directly on images,
making the LSTM network learn both spatial and temporal patterns from the video. Figure 10
shows the LSTM architecture used.

3.3.2 Two-stream networks

Methods discussed in the previous Sections receive stacks of video frames as input and
are expected to learn features that include both spatial and temporal information. Two-stream
networks (SIMONYAN; ZISSERMAN, 2014) leverage a different architecture that uses two
separate networks, one that analyses spatial information from video frames and another that
focused only on temporal information. The second network receives dense optical flow images
as input, which are previously extracted from each video. The results obtained from both streams

3.3. Spatio-temporal representation learning 63

are then combined.

One of the greatest advantages of using two-stream networks is that, by decoupling the
spatial an temporal networks, it is possible to leverage the large amount of image data available
by pretraining the spatial network in large datasets such as ImageNet (DENG et al., 2009). Also,
the use of stacked optical flow displacement fields extracted from several consecutive frames as
the temporal network’s input makes learning relevant temporal features easier, since it already
explicitly provides relevant motion information. On the other hand, two-stream networks are
not able to leverage both spatial and temporal information at the same time, that is, they are
not capable of identifying the actors of each movement pattern (FEICHTENHOFER; PINZ;
ZISSERMAN, 2016). Also, their temporal scale is limited by the number of stacked optical flow
frames.

Simonyan and Zisserman (2014) used convolutional networks for both streams and
combined them by using late fusion on the softmax scores. They also show that using only spatial
data (independent video frames) can provide, by itself, relevant information for action recognition.
Furthermore, a discussion is presented about how the temporal network can generalise spatio-
temporal local features that derive from optical flow, such as HOF and MBH. Using a similar
architecture, Ng et al. (2015) state that even temporal networks can benefit from using pre-trained
parameters learnt from images, as it helps the network converge faster.

Feichtenhofer, Pinz and Zisserman (2016) tries to overcome the main drawbacks from
two-stream models by experimenting with different spatial and temporal fusion at different
stages of the networks. Their proposed architecture achieved state-of-the-art results on action
recognition by combining information from the temporal stream into the spatial stream after the
last convolutional layer (post ReLU activation). The fusion is computed using 3D convolution
followed by 3D pooling. The temporal stream is not truncated after the fusion and also uses
a 3D pooling after the last convolutional layer. Each stream (spatio-temporal and temporal)
has its own loss and classification output. These outputs are combined by summation of the
softmax outputs. The results improved when the softmax outputs from the proposed network
were combined with IDT by averaging with outputs of a SVM, which shows that there is
complementary information between the hand-crafted representations and the information learnt
by the networks. Feichtenhofer, Pinz and Wildes (2016) uses convolutional layers organised as
residual blocks to build a two-stream network.

Temporal Segment Network (TSN) (WANG et al., 2016) was proposed for action recogni-
tion in videos with the main idea of modelling long-term temporal information while maintaining
reasonable computational costs by using a sparse temporal sampling strategy and video-level
supervision. Different multiple stream configurations were proposed and evaluated in an attempt
to extract relevant information while dealing with many different complexities in the data, such
as scale variations, viewpoint changes, and camera motion. The final TSN architecture uses a
three-stream network to process information from RGB images, stacked optical flow images,

64 Chapter 3. Spatio-temporal representation learning

and stacked warped optical flow images. During processing, each video is broken into short
snippets which are then sparsely sampled into segments. Each segment is classified by the
network and these classifications are aggregated to achieve a video-level prediction. Since the
loss values are computed over video-level predictions and passed to the entire network through
backpropagation, its parameters are optimised considering information from the entire video
(long-term information).

Carreira and Zisserman (2017) proposed Two-Stream Inflated 3D ConvNets (I3D), which
leverage state-of-the-art image classification architectures to create 3D convolutional two-stream
networks. This is done inflating pre-trained image classification architectures, that is, both their
filters and pooling kernels are transformed from two dimensional into three dimensional by
replicating the learnt kernels on the new dimension. This allows very deep spatio-temporal
networks to be trained, overcoming the size of currently available labelled video datasets and
reducing the amount of training required on video data.

3.3.3 Video clip selection

The most common way to achieve a video-level prediction is to combine all predictions
obtained by analysing multiple randomly sampled video clips. This is usually done while treating
every video clip equally, that is, without using any kind of weighting based on the importance
of each clip. However, there is no guarantee as to how representative the random sample video
clips are, especially when considering that relevant information may occur sparsely within a
video. By using irrelevant video clips to achieve a video-level prediction, the performance of the
end-to-end classifier can be hindered (ZHU et al., 2016).

Zhu et al. (2016) proposes an architecture and training procedure that considers action
recognition in videos as a weakly supervised learning problem, where only video-level labels are
available, without precise time windows identification for each label. The proposed framework
tries to simultaneously identify key video clips and train a classifier that is not influenced by
video clips that irrelevant to the given task. This is done by optimising two separate objects
during different stages of the backpropagation procedure.

During the forward pass, a random selection of video clips is passed through the network
that identifies the most relevant ones for each class. The backward pass then updates the network
parameters considering the output obtained during the first stage. This training procedure is
enhanced by an unsupervised key volume proposal algorithm and a “stochastic out” operation
that help the network identify the most relevant video clips.

3.4 Concluding remarks
This chapter presented the main approaches used to perform representation learning

on video data. Even though many approaches have been proposed, none of them has a clear

3.4. Concluding remarks 65

performance advantage over the others and there are currently no studies that help select which
is the best approach given a dataset and task. Also, the evaluation protocol may not be adequate
to understand the behaviour under spatio-temporal representations from videos. This is probably
why the literature not yet reached the same performance level as representation learning from
images, and so, is considered to be an open research area.

67

CHAPTER

4
SPATIO-TEMPORAL REPRESENTATION

ANALYSIS

4.1 Opening remarks

The main difficulty of working with video datasets is to consider both spatio and temporal
information simultaneously. A video can be processed as a set of static images, where spatial
information can be extracted. However, when the images are considered to be in a sequence,
the evolution of the spatial information creates a temporal dimension which contains relevant
information for most video-related tasks. This evolution usually follows certain rules, such as
temporal coherence, which can be leveraged when encoding spatio-temporal information, but
there are no guarantees that these rules will never be broken. Finding ways to encode both spatial
and temporal information from videos into representations is still considered to be an open
research area. Evaluating such representations is another important matter still to be investigated.

Different approaches have been proposed to create end-to-end deep learning architectures
to model spatio-temporal information from videos. The most common ones use either convolu-
tional layers to model both temporal and spatial information or convolutional layers that deal
with spatial information and recurrent layers that encode temporal information. Another way of
dealing with videos is to use multiple networks that deal with each type of information separately
before combining the learnt information into a single feature space (e.g. two-stream networks).
Nonetheless, it is still unclear when each of these network architectures should be used, which
are their main advantages and disadvantages and which domains are they suitable for. To the best
of our knowledge, no studies have been made to investigate the different ways these architectures
encode spatial and temporal information and how well the representations learnt generalise to
slight changes in this information. In this chapter, we present a novel evaluation protocol for
spatio-temporal representation learning from video data. This is the first experimental pipeline
focused on investigating the behaviour of a deep learning architecture when dealing with spatial,

68 Chapter 4. Spatio-temporal representation analysis

Model Number of trainable parameters

C3D 1122708
R3D 1209492
R21 1212671
CNN+LSTM 18495208
CNN+LSTM (2) 14055484
Table 1 – Number of trainable parameters per architecture

temporal and spatio-temporal information in videos.

4.2 Experimental setup

The main goal is to understand how state-of-the-art deep learning architectures deal
with spatio-temporal information in videos when learning representations. For this, we propose
a new experimental pipeline based on a set of three datasets based on the BouncingMNIST
dataset (SRIVASTAVA; MANSIMOV; SALAKHUDINOV, 2015). Each of the datasets was
designed to expose the representation learning algorithm to a specific spatio-temporal setting
while being consistent so that the results are comparable across dataset versions. We configured
the datasets as a multilabel problem where each video contains two digits to be recognised.
The multilabel setting allows the representations to be organised into groups and subgroups by
approximating videos that have at least one label in common, which are then separated into
smaller groups based on their second label. The length of videos in each dataset version can be
set according to the length required for tested networks. In this case, each video was set to have
a length of 16 frames.

The proposed pipeline was used to evaluate the following architectures (all of which are
described in Chapter 3): C3D (TRAN et al., 2015), R3D (TRAN et al., 2018), R21D (TRAN et

al., 2018), and two versions of CNN+LSTM (SRIVASTAVA; MANSIMOV; SALAKHUDINOV,
2015). The first version of the CNN+LSTM is trained from scratch for both the convolutional
network and the LSTM on the training dataset, while CNN+LSTM (2) uses a pre-trained CNN: a
MobilenetV2 (SANDLER et al., 2018) pre-trained on the Imagenet dataset (DENG et al., 2009).
In a similar manner as proposed in Tran et al. (2018), the C3D, R3D and R21D architectures
were defined so that they have a similar number of trainable parameters. A batch normalisation
layer is used after each convolutional layer on every architecture used for the experiments. These
architectures are illustrated in Figure 11 and the number of trainable parameters in each one can
be seen in Table 1.

For every architecture, three models are generated, one for each dataset version. These
models were named after the dataset they were trained on: Spatial, Temporal and Spatio-temporal;
these names indicate which information is relevant for the recognition task. Since all the models

4.2. Experimental setup 69

(a) C3D

(b) R3D

(c) R21D

(d) CNN+LSTM

(e) CNN+LSTM (2)

Figure 11 – Network architectures used in the following experiments. Each type of layer or layer block is
represented by a different colour. Batch normalisation layers were omitted. The CNN+LSTM
(2) architecture uses a pretrained MobilenetV2, in which each box represents a residual block
as described in (SANDLER et al., 2018).

are evaluated using every version of the dataset, nine different results are obtained for each
architecture, one for every <training dataset version, test dataset version> pair. The pipeline used
for these experiments is shown in Figure 12.

We use a model selection scheme where all architectures are trained for the same number
of epochs (50) and the model that achieves the best training accuracy during these 50 epochs
is used for further evaluation. This is done because different architecture requires a different
number of epochs to reach good results and by doing so we believe that the comparison between
the results from different architectures will be fairer.

Multiple approaches are used to evaluate the organisation of the learnt feature spaces.
First, we classify samples using a linear SVM model trained using a One-vs-Rest context. The
quality of these classifiers indicates how linearly separable each class is from the others on
a given features space. Then, several different projection algorithms (t-Distributed Stochastic
Neighbour Embedding (tSNE) (MAATEN; HINTON, 2008), Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA)) are used to visualise each learnt feature space.

70 Chapter 4. Spatio-temporal representation analysis

Figure 12 – Experiment pipeline used to obtain the results presented in this chapter. Each training dataset
is used to train a model for each of the considered architectures, creating three models for
each architecture. Every model is then tested on each one of the three test datasets, producing
nine different results for each architecture.

The main goal of the visualisations is to get a better sense of the capability of each architecture
to describe and organise spatio-temporal data.

Every model was trained for 50 epochs, with 32 video clips in each mini-batch and
using Adam optimisation (KINGMA; BA, 2014). The learning rate was set to 0.0005 for all
architectures except the LSTM architectures which used a 5e−6 learning rate. These were made
following literature standards and also based on empirical results.

Since we configured the datasets to address a multilabel character recognition problem,
the last layer of all networks was set to have 2× n_classes instead of n_classes as usual. In
our setup, each class is represented by a pair of neurons in the output layer, where one neuron
indicates the presence of that class while the other indicates its absence. The use of pairs of

4.3. Datasets 71

Figure 13 – Colour representation for each digit used for feature space visualisations.

neurons instead of a single neuron for each class removes the need to set a threshold that defines
if the output is positive or negative since the highest activation is selected. Sigmoid activation is
used for the last layer. Also, this setup allows for any number of classes to be assigned by the
classifier to every input. For this dataset, n_classes = 10.

To visualise the feature space in a multilabel setting, each projection is shown twice
with different colours for each observation. The labels for each input were placed on a list and
sorted; the colour on the first visualisation shows the first label in the list for every input while
the second visualisation shows the last label. LDA projections depend on the labels, so the
projections are different for the same feature space, however, the way they are generated follows
the same procedure as the other visualisations. That is, the first labels are used to create the first
projection and the last labels, the second projection. Each colour represents the presence of a
digit in the video (Figure 13). If the same digit appears twice, the colour is repeated on both
visualisations.

These experiments focus on achieving a better understanding of how well each archi-
tecture learns about spatial and temporal information from videos and how they encode this
information when it is only partially relevant. We also try to evaluate each architecture’s capabil-
ity of generalising the learnt representations to similar datasets when information is presented in
a slightly different way or when different information is relevant to the task at hand.

4.3 Datasets

4.3.1 BouncingMNIST

The BoucingMNIST dataset is a synthetic video dataset created using MNIST digits that
move around following random paths and bouncing off the edges. Since it is a synthetic dataset,
most of the characteristics can be adapted to fit different cases; some of the characteristics that
are adjustable are: resolution, number of digits, digits sampling configuration, digit moving
speed and digit size. For these experiments, we use: 64×64 resolution with no digit resizing;
2 digits are randomly sampled for each video. Digits are allowed to overlap, which creates a
more challenging digit recognition problem. A multilabel setting with one or two classes per
video was selected because it allows the analysis to reach a better understanding of the feature
space organisation since it allows the observations to be organised into groups and subgroups by
approximating videos that have a single label in common and then splitting them into subgroups

72 Chapter 4. Spatio-temporal representation analysis

(a) Spatial

(b) Temporal

(c) Spatio-temporal

Figure 14 – Sample video generated for each version of the BouncingMNIST dataset. The main focus
of this dataset is to analyse how spatio-temporal representation learning behaves in different
settings.

based on the second label.

We propose three different versions of the BouncingMNIST dataset to analyse how spatio-
temporal representation learning encode the information present in videos1. These versions are:

1. Spatial: digits move with a constant velocity c. The only relevant information for digit
recognition is the spatial (visual) information;

2. Temporal: the velocity of each digit is determined by the a linear function based on
their labels ((digitlabel+1) · c). Digits are replaced by a 14×14 squares so that temporal
information is the only relevant information for digit recognition;

3. Digits and velocity: a combination of the previous versions where both temporal (velocity
based on label) and spatial (digit appearance) information are relevant for digit recognition;

To make results from different versions more comparable, random seeds were set to
a fixed value so that the n-th video of every version of the dataset is generated with the same
randomly sampled digits and follow the same random paths. This reduces the influence of
random factors included during the data generation. An example of a video generated on all
three versions of the dataset can be seen in Figure 14.

It is important to notice that the only difference between the training and test splits are
a pool of digits used for random sampling. That is, when random sampling digits to compose
a video, the digits are selected from either the training or test splits of the MNIST dataset
depending on the split being generated (training or test). This means that there are no differences
between the training and test sets of the Temporal version of the dataset.

1 The source code used to generate these datasets is available at <https://github.com/gbpcosta/video_
representations>.

https://github.com/gbpcosta/video_representations
https://github.com/gbpcosta/video_representations

4.4. Results 73

Model Spatial Temporal Spatio-temporal

C3D 0.90525 0.98850 0.98900
R3D 0.83825 0.96300 0.97500
R21D 0.88325 0.98325 0.98775
CNN+LSTM 0.78150 0.07675 0.88025
CNN+LSTM (2) 0.50250 0.01875 0.63750

Table 2 – Accuracy obtained by the each architecture by evaluating each model on test set of the dataset
version used for training. We select the model used for evaluation by choosing the one that
achieved (at the end of an epoch) the best training accuracy.

4.4 Results

4.4.1 Intra-dataset analysis

We start focusing on the results obtained by each architecture when they are trained
and tested in the same dataset version. As mentioned before, every architecture is trained for
50 epochs and a checkpoint is created at the end of every epoch. The checkpoint that achieves
the best training accuracy is selected as the final model. If multiple models achieve the same
accuracy, the one from the earliest epoch is selected among those. By doing so, we aim to
minimise possible instabilities in the training stage presented by any of the architectures. This
model is then evaluated on the test set. The results of this evaluation are shown in Table 2.

The C3D, R3D and R21D architectures had similar performances for the Temporal and
Spatio-temporal datasets, with an overall difference of 0.1%. However, R21D achieved better
accuracy than the other two architectures when classifying the Spatial dataset – 2.2% and 6.7%
higher accuracy than the C3D and R3D methods, respectively. CNN+LSTM and CNN+LSTM
(2) had a notably worse performance, especially for the Temporal dataset version. Since the
CNNs in these architectures are pre-trained on images, the performance of the final model was
probably hindered when no relevant spatial information is available. That is, these results indicate
that the LSTM is not able of capturing the temporal information from the features learnt by
the CNN when the spatial information is not relevant. Also, the pre-trained network used in
CNN+LSTM (2) affected the performance of the final model even further.

In general, processing spatial and temporal information simultaneously seems more
adequate when dealing with videos, when compared to processing spatial information followed
by a temporal combination of the spatial features. Furthermore, residual blocks had no impact
on the final accuracy, however, replacing the 3D convolutions by combinations of 2D and 1D
convolutions significantly improved the results.

74 Chapter 4. Spatio-temporal representation analysis

(a) Spatial (b) Temporal (c) Spatio-temporal

Figure 15 – Performance (per epoch) of the C3D architecture on the test sets. The training and test sets
used to evaluate each one of the three models belong to the same dataset version.

4.4.1.1 C3D

As expected, the dataset version containing relevant information for digit recognition
only in the spatial dimensions presented a greater challenge than the other versions. This happens
because the Spatial version of the dataset has greater intra-class variability. Even so, C3D models
achieved high accuracy in all versions of the dataset, nearly reaching a perfect score when
relevant temporal information was available. By analysing Figure 15, it is possible to notice how
the quality of the learnt representations evolved during the training of each C3D model over 50
epochs. In this figure, each image shows the accuracy obtained by the model at the end of every
epoch by evaluating it on the respective test sets.

When both (spatial and temporal) pieces of information were relevant, the C3D archi-
tecture created a feature space able to separate the classes. We reach this conclusion due to
the architecture’s better performance when relevant class information is available as temporal
and spatial information in the videos. Moreover, when trained in the Spatio-temporal dataset,
this architecture reaches a performance similar to the one obtained with the Temporal dataset,
which indicates that temporal information was more important to discern between the classes (as
discussed earlier in this chapter). Also, similar fluctuations in the performance when training on
the Spatial and the Spatio-temporal versions of the dataset supports our previous conclusion.

Figure 16 shows the visualisations created using tSNE projections of the features ex-
tracted from the previous to last layer of the C3D architecture. Each dot represents a video from
the test set. Similar to all the other results shown in this Section, these visualisations were created
using training and test sets from the same version of the dataset.

By analysing the projections, we noticed that when temporal information is irrelevant
for the task, the network has more difficulty in creating a feature space capable of separating
the classes. When relevant temporal information was included, the network was able to create
representations that separates the data into groups and subgroups based on the classes present in
the videos. It is important to consider that the high quality of the feature space obtained when
temporal information is relevant most likely occurs due to the simplicity of this information, that
is linearly proportional to the class and has zero intra-class variability.

4.4. Results 75

4.4.1.2 R3D

The R3D architecture is similar to C3D, however, its layers are organised as residual units.
For the datasets considered in this experiment, the performance of the R3D architecture was
inferior to the obtained by C3D, which also achieved more stable results during the experiments.
These results can be seen in Figure 17, where the network’s accuracy on the test set is shown at
the end of each epoch, for each of the dataset versions.

Overall, the behaviour of the R3D architecture was similar to C3D: greater difficulty
in classifying the Spatial version of the dataset and high accuracy scores on the Temporal and
Spatio-temporal versions. However, in comparison to the C3D architecture, R3D was more
unstable during the training on Temporal and Spatial than when training on Spatio-temporal.
That is, the R3D architecture was more stable when both spatial and temporal information were
relevant to the task.

Multiple visualisations were created using PCA projections of the features from the
penultimate layer of each R3D model. These visualisations can be seen in Figure 18. It is possible
to see that by including temporal information the learnt feature space was able to increase the
separability between classes. Also, it is interesting to notice that the changes to the feature space
when temporal information is relevant occur primarily in a limited number of directions (similar
to vectors), starting at a central point where there is a higher density of samples. Even though the
transformation made to the feature space by the PCA method is linear, we notice that, even when
looking at only two dimensions, the classes show considerable separability and organisation into
groups and subgroups based on the classes in each video. This fact is even more evident when
using Temporal and Spatio-temporal.

4.4.1.3 R21D

Among the architectures tested in this experiment, R21D achieved the best overall
performance by a small margin (Table 2), only losing on the Temporal version of the dataset.
When looking at the performance of the R21D architecture overall 50 training epochs (Figure 19)
and comparing the results to the ones obtained with C3D and R3D architectures, we noticed
that R21D had more drastic variations on the performance over time, however, these variations
happen less frequently.

Including relevant temporal information helped to stabilise the performance of the
network during training, achieving the best accuracy after a smaller number of epochs. This
behaviour is similar to what was observed with previous architectures. When both spatial and
temporal information where relevant, the behaviour of the R21D architecture was a combination
of what was seen with the C3D and R3D architectures, where small fluctuations on the per-
formance happen more frequently. Similar to other analysed architectures, once the maximum
accuracy achieved by the method was reached, it stabilised.

76 Chapter 4. Spatio-temporal representation analysis

To help better understand the learnt feature space, tSNE projections are shown in Fig-
ure 20. As expected (and discussed in Section 4.3), relevant temporal information made the
problem of learning a feature space where the classes are separable easier. When compared to
tSNE projections obtained with C3D, it is possible to see that the R21D architecture was able to
build a space with better organisation for Spatial. This conclusion is reassured by the increase
in the accuracy obtained by R21D for this dataset version. For the other versions, R21D also
showed better structuring of the feature space into groups and subgroups, increasing, in most
cases, the gap that separates a group/subgroup from others.

4.4.1.4 CNN+LSTM

When dealing with architectures that combine CNNs with LSTMs, training was per-
formed in two stages. First, the CNN network is trained for 50 epochs to identify digits in
individual frames randomly selected from videos. The trainable parameters in this network are
frozen and the last (softmax) layer is discarded. Then, the LSTM network is trained by using the
previously trained CNN to extract features from each frame, which are passed to the LSTM as
time steps in a time series. Figure 21 shows the performance of the CNN+LSTM architecture
during both stages of the training procedure. These images show that the performance of the
CNN+LSTM architecture was unstable during training and that it achieved results similar to the
ones obtained by the CNN independently. We believe that this occurs because the CNN network
was not capable of passing enough relevant information to the LSTM for it to learn about each
digit’s velocity. This is even more clear when looking at the performance of this architecture for
Temporal. Also, this architecture showed to be the hardest to find adequate hyper-parameters.
While all other architectures were reasonably stable and achieved similar results for similar
hyper-parameters, CNN+LSTM’s performance varied largely when making small changes to
hyper-parameters such as the learning rate.

When looking at the projections obtained using the LDA method on the features extracted
from the LSTM network, we noticed that when spacial information is relevant to the task at
hand, the feature space learnt by the CNN achieves a higher separability between classes than
the entire CNN+LSTM architecture. However, the projections also show that the feature space
created by the CNN+LSTM architecture was capable of encoding temporal information when
trained on the Temporal version of the dataset. We believe that it is possible to improve the
results achieved in these experiments by making a broader search for hyper-parameters and
architecture combinations (for both networks, CNN and LSTM). Moreover, for the configuration
used in these experiments, CNN+LSTM was not able to leverage the available information when
both, temporal and spatial information, were relevant.

4.4. Results 77

4.4.1.5 CNN+LSTM (2)

Replacing the CNN network used in the previous model (CNN+LSTM) with a Mo-
bileNetV2 network (SANDLER et al., 2018) pre-trained on the Imagenet dataset changed the
model’s behaviour. Figure 23 shows that the pre-trained CNN training process becomes more
stable, which indicates that the representations extracted using the CNN model and passed to
the LSTM network may be one of the main causes of the instability presented by the previous
model. Even though CNN+LSTM (2) was more stable than CNN+LSTM, CNN+LSTM (2) did
not achieve the same performance level as the CNN+LSTM. Another interesting point is that
the second combination had a worse performance even for the Temporal version of the dataset,
which shows that the CNN trained specifically for this dataset was capable of learning relevant
information, such as the position of the squares inside each frame.

The features extracted from the previous to last layer of the CNN+LSTM (2) architecture
were extracted and used to create LDA projections, which can be seen in Figure 24. The
projections for the CNN features extracted from the Temporal version of the dataset were not
included because the LDA method did not converge. We believe this happened because the
features extracted by the network could not encode the variability present in the original data.
Nevertheless, the LSTM network was able to infer some information about the class from the
features of the CNN, as seen by the organisation of the samples in the LSTM feature space in
Figure 24b. Also, by comparing these projections with the ones obtained by the previous model
(CNN+LSTM), we noticed that the pre-trained CNN feature space provided less intra-class
separability than the CNN trained specifically for this dataset. The quality of this feature space
was probably the main reason why the CNN+LSTM (2) architecture did not achieve the same
performance as the CNN+LSTM architecture.

4.4.2 Cross-dataset analysis

In this experiment, we evaluate the capability of each architecture to generalise the
knowledge acquired from one version of the dataset to each other version. To this end, we select
the model that achieved the best accuracy during the training stage. That is, for each architecture,
three models are selected with respect to the evaluation performed at the of each epoch in the
training stage, wherein the evaluation is done using the training set. When more than one model
achieves the same accuracy, we select the model that corresponds to the earliest epoch.

The results obtained by each model trained in the Spatial version of the dataset can be
seen in Table 3. In this case, all architectures considered in the experiment were capable of
generalising the information learnt to the Spatio-temporal version. However, the performance of
the C3D, R3D and R21D architectures fell 9.5% on average. Among these, the C3D architecture
achieved the best generalisation to Spatio-temporal (reduction of 5.9% on the accuracy). On the
other hand, the CNN+LSTM and CNN+LSTM (2) architectures had an increase in accuracy when
comparing the results for the versions Spatial and Spatio-temporal (0.9% and 3.3%, respectively).

78 Chapter 4. Spatio-temporal representation analysis

Model Training set: Spatial
Spatial Temporal Spatio-temporal

C3D 0.90550 0.02675 0.37225
R3D 0.84675 0.02175 0.28750
R21D 0.87725 0.01525 0.34475
CNN+LSTM 0.83150 0.01075 0.84075
CNN+LSTM (2) 0.60125 0.01750 0.63375

Table 3 – Accuracy obtained by the “best” model trained on Spatial for each architecture and evaluated on
the test set of every dataset version.

We believe that this happens because the CNN networks were capable of capturing the relevant
spacial information in a way that when temporal information was relevant, the performance was
not hindered.

The performance of all architectures behaved as expected when evaluated on Temporal.
Since there is no intersection between the relevant class information present in the training set
(Spatial) and test set (Temporal), the accuracy achieved by all models was significantly low,
reaching an average of 1.4%.

Table 4 shows the results obtained by each model trained on Temporal and evaluated on
every version of the dataset. Differently to what was observed when the models were trained
on Spatial, in this case, none of the models were capable of generalising the learnt temporal
information to the Spatio-temporal version in a satisfactory manner. The best performance was
achieved by the C3D and R3D models, reaching 13.9% and 14.7%, respectively. As discussed
when analysing the previous set of experiments, it was expected that the accuracy when training
on Temporal and evaluating on the Spatial would be low, since there is no intersection between
the relevant information present in both versions.

The CNN+LSTM and CNN+LSTM (2) models were the ones that presented the worst
results among the models addressed in these experiments, which likely happened because the
CNNs were not capable of passing relevant information to the LSTM, making it hard for the
LSTM to learn about the temporal evolution of each video. However, based on the analysis
shown in the previous section, we expected that the CNNs passed information about the position
of the squares in each frame of the video, so the LSTM network would be able to infer the
velocity of each object and, consequently, their classes; which did not happen. This indicates
that the CNNs learnt to track squares and that this knowledge was not extended to other objects
in the image.

Finally, the results obtained by the models trained on Spatio-temporal are shown in Ta-
ble 5. Even though the models were trained with both (spatial and temporal) relevant information,
none of the methods were able to generalise that knowledge to any of the other dataset versions,
where only one of the two types of information was relevant. This shows that all the architectures

4.4. Results 79

Model Training set: Temporal
Spatial Temporal Spatio-temporal

C3D 0.02050 0.98900 0.13925
R3D 0.01100 0.96875 0.15650
R21D 0.01225 0.98025 0.05550
CNN+LSTM 0.01350 0.10975 0.07000
CNN+LSTM (2) 0.00825 0.02350 0.00975

Table 4 – Accuracy obtained by the “best” model trained on Temporal for each architecture and evaluated
on the test set of every dataset version.

Model Training set: Spatio-temporal
Spatial Temporal Spatio-temporal

C3D 0.04875 0.23025 0.98500
R3D 0.04375 0.24100 0.97250
R21D 0.05250 0.16925 0.98450
CNN+LSTM 0.76225 0.00850 0.57650
CNN+LSTM (2) 0.59600 0.01525 0.56025

Table 5 – Accuracy obtained by the “best” model trained on Spatio-temporal for each architecture and
evaluated on the test set of every dataset version.

addressed in these experiments rely on a combination of spatial and temporal information to
classify the objects correctly, and if one information domain presents some kind of variation, the
network will not be able to generalise the knowledge learnt accordingly.

When considering the generalisation capability of the architectures considered in this
experiment, the CNN+LSTM and CNN+LSTM models were the ones that reached the highest
accuracy on Spatial (76.2% and 59.6%, respectively). Their performance is probably due to
the CNN networks being responsible to only learning spatial information, allowing the LSTM
network to “ignore” the temporal information without any changes to the architecture. Other
models, that use convolutional operations to encode temporal information, were not capable of
generalising the knowledge to any of the other versions of the dataset.

The results shown in this section demonstrate the difficulty of spatio-temporal repre-
sentation learning methods to generalise the knowledge encoded even when the datasets are
very similar. They also show that this difficulty is heightened when both temporal and spatial
information are processed simultaneously and when the temporal information varies from the
training set to the test set. These results led to another experiment shown in Section 4.4.3, where
we aim to evaluate if spatio-temporal representation learning methods can generalise for cases
where there is a consistent variation in the temporal information present in the videos.

80 Chapter 4. Spatio-temporal representation analysis

Model Training set: Velocity– Training set: Velocity+
Velocity– Velocity+ Velocity– Velocity+

C3D 0.98500 0.03050 0.03450 0.96525
R3D 0.97250 0.01500 0.05100 0.94325
R21D 0.98450 0.01850 0.06175 0.96750
CNN + LSTM 0.80600 0.85925 0.73125 0.88025
CNN + LSTM (2) 0.64775 0.70175 0.60075 0.73400

Table 6 – Analysis of the generalisation capability of the spatio-temporal representation learning methods
to consistent changes on temporal information. This experiment considers two different settings
of the Spatio-temporal dataset where digits in the setting Velocity+ move 3 times faster than
digits in Velocity–.

4.4.3 Velocity variation analysis

One of the most common ways of dealing with the high amount of information in a
video is to perform undersampling on the frames. On average, each video contains 25 frames
per second, which makes it necessary to process a high number of images (frames) to cover a
long temporal window. The number of images that needs to be analysed so that the temporal
information is encoded makes the problem of video processing computationally expensive. A
common solution that reduces the computational cost of video analysis is to select a single frame
at each time interval (e.g. every second).

One of the main problems caused by this undersampling of frames is the risk of losing
continuity (temporal coherence), especially for faster moving objects. In an attempt to simulate
this effect, we modified the Spatio-temporal version of the dataset so that the movement of the
digits from one frame to the next is more or less drastic (Velocity+ and Velocity–, respectively).
The velocities in these settings vary by a factor of 3 (i.e. Velocity+← 3×Velocity−−). Models
were trained and tested using both settings and their results are shown in Table 6.

The results show that the models that use convolution to deal with temporal information
(C3D, R3D and R21D) are not capable of generalising what they learnt from one setting to the
other, unlike the CNN+LSTM and CNN+LSTM (2) models. Also, the results indicate that the
CNN+LSTM and CNN+LSTM (2) models are more suited for tasks that deal with fast-moving
objects.

4.5 Concluding remarks

In this chapter, we present a novel evaluation protocol for models that learn spatio-
temporal representations from videos. We show that, when learning representations from videos,
it is important to process spatial and temporal information during all stages of learning rather
than first learning spatial features and only then offer this to a model that incorporates tempo-
ral information. However, currently, the most common methods that perform spatio-temporal

4.5. Concluding remarks 81

learning rely on convolutions, which fails to generalise for the same spatial data with different
temporal characteristics, pointing out to the need for future studies.

Important evidence is given on how different methods behave when learning from videos.
Although the different studied approaches showed potential in particular scenarios, a gap still
exists — especially in terms of generalisation — when comparing methods that learn from
images. Different architectures and training strategies can be analysed using the presented
protocol, allowing researchers to reach a better understanding of the pros and cons of each
architecture/method. We believe exploring new ways of incorporating the temporal information
along all stages of training is the next step to significantly improve the current performance of
spatio-temporal representation learning methods.

We take a first towards our hypothesis with the proposed evaluation pipeline, which
focuses on achieving a better understanding of how spatial and temporal information is encoded
by different representation learning architectures. The proposed evaluation framework sheds a
new light on the representations learned from video. The comparison of the results on the pipeline
for different architectures shows that including spatial and temporal information encoding in
all the stages of representation learning improves the learnt feature space. However, encoding
spatial and temporal information in two consecutive stages improves the capability of the learnt
feature space to changes in the temporal dimension.

82 Chapter 4. Spatio-temporal representation analysis

(a) Spatial (b) Spatial

(c) Temporal (d) Temporal

(e) Spatio-temporal (f) Spatio-temporal

Figure 16 – tSNE projections obtained from the representations extracted from the previous to last layer of
the C3D architecture for each model (dataset version). Both training and test sets belong to the
same dataset version. Due to the analysis being done in a multilabel setting, each projection is
shown twice, where the colour of each dot indicates the class it belongs to (classes from each
video are sorted so that the first projection – left column – shows the colour of the smallest
class, and the right column shows the colour of the largest class present in the video).

4.5. Concluding remarks 83

(a) Spatial (b) Temporal (c) Spatio-temporal

Figure 17 – Accuracy (at the end of each epoch) of the R3D architecture on each test sets. Both the
training and test sets belong to the same dataset versions.

84 Chapter 4. Spatio-temporal representation analysis

(a) Spatial (b) Spatial

(c) Temporal (d) Temporal

(e) Spatio-temporal (f) Spatio-temporal

Figure 18 – PCA projections obtained from the representations extract from the activation of the penul-
timate layer of each R3D model, using the test set of each version of the dataset. Due to
this being a multilabel problem, all projections are shown twice. Images in the first column
(left) show the colour of the dots that indicate the lowest class in the video, while the second
column shows the colour of the class representing the highest digit in the video.

4.5. Concluding remarks 85

(a) Spatial (b) Temporal (c) Spatio-temporal

Figure 19 – Accuracy (at the end of each epoch) of the R21D architecture when tested on the test set of
each version of the dataset. Both training and test sets belong to the same dataset version.

86 Chapter 4. Spatio-temporal representation analysis

(a) Spatial (b) Spacial

(c) Temporal (d) Temporal

(e) Spatio-temporal (f) Spatio-temporal

Figure 20 – tSNE projections obtained from representations extracted from the previous to last layer of
the R21D architecture for each model. Both training and test sets belong to the same dataset
version. Due to the analysis being done in a multilabel setting, each projection is shown twice,
where the colour of each dot indicates the class it belongs to (classes from each video are
sorted so that the first projection – left column – shows the colour of the smallest class, and
the right column shows the colour of the largest class present in the video).

4.5. Concluding remarks 87

(a) CNN Spatial (b) CNN Temporal (c) CNN Spatio-temporal

(d) Spatial (e) Temporal (f) Spatio-temporal

Figure 21 – Performance (per epoch) of the CNN+LSTM architecture on test sets. The training and test
sets used to evaluate each one of the three models belong to the same dataset version.

88 Chapter 4. Spatio-temporal representation analysis

(a1) CNN

(a2) CNN+LSTM

(a) Spatial

(b1) CNN

(b2) CNN+LSTM

(b) Temporal

(c1) CNN

(c2) CNN+LSTM

(c) Spatio-temporal

Figure 22 – LDA projections obtained from the representations extracted from the previous to last layer
of the CNN+LSTM architecture for each model (dataset version). Both training and test sets
belong to the same dataset version. Due to the analysis being done in a multilabel setting and
LDA being a supervised projection method, two different projections are shown. The colour
of each dot indicates the class it belongs to. Classes from each video are sorted so that the
first projection – left column – shows the colour of the smallest class, and the right column
shows the colour of the largest class present in the video.

(a) Spatial (b) Temporal (c) Spatio-temporal

Figure 23 – Performance (per epoch) of the CNN+LSTM (2) architecture on the test sets. The training
and test sets used to evaluate each one of the three models belong to the same dataset version.

4.5. Concluding remarks 89

(a1) CNN

(a2) CNN+LSTM

(a) Spatial

(b2) CNN+LSTM

(b) Temporal

(c1) CNN

(c2) CNN+LSTM

(c) Spatio-temporal

Figure 24 – LDA projections obtained from the representations extracted from the previous to last layer
of the CNN+LSTM (2) architecture for each model (dataset version). Both training and test
sets belong to the same dataset version. Due to the analysis being done in a multilabel setting
and LDA being a supervised projection method, two different projections are shown. The
colour of each dot indicates the class it belongs to. Classes from each video are sorted so
that the first projection – left column – shows the colour of the smallest class,and the right
column shows the colour of the largest class present in the video. The projections for the
CNN features extracted using the Temporal version of the dataset (b1) are not shown because
LDA did not converge.

91

CHAPTER

5
REPRESENTATION GENERALISATION

ANALYSIS

5.1 Opening remarks

One of the desirable characteristics of feature extraction or representation learning
algorithms is for it to extract features that can generalise to multiple situations, such as different
datasets, domains or tasks. This allows the same algorithm to be applied to different settings
without requiring humans to input specialised knowledge or to adapt the representations in any
way.

In this chapter, we evaluate the generalisation capabilities of a representation learning
architecture and compare it to the state-of-the-art hand-crafted feature extraction algorithm. This
is done through four experiments, each one using a different dataset. The selected datasets cover
two tasks (action recognition and dynamic scenes recognition) with different characteristics,
such as dataset size, video resolution and camera motion. The main goal of these experiments is
to analyse the quality of the feature space created by each feature extraction method in multiple
tasks and settings. These experiments complement the analysis presented in the previous chapter
by looking at real-world datasets and comparing the results of a selected representation learning
architecture and the state-of-the-art hand-crafted feature extraction method on the task it was
proposed for and a second task unknown for both methods.

5.2 Experimental setup

In this set of experiments, we selected two state-of-the-art methods were to extract
features from four different datasets. Later, the resulting feature vectors were fed to linear SVMs
for classification purposes. The goal of these experiments is to analyse the linear separability of
the features extracted and their generalisation capabilities to different datasets, domains and tasks.

92 Chapter 5. Representation generalisation analysis

Figure 25 – C3D architecture pretrained in the Sports-1M dataset used in the experiments. This archi-
tecture contains 8 convolution, 5 max-pooling, 3 fully connected layers, wherein the last
fully connected layer uses a softmax activation function. The convolution kernels were set
to 3×3×3 while using a stride of 1 in both spatial and temporal dimensions. The number
of units in each layer is specified in each box. The 3D pooling layers use kernels of size
2×2×2, with the exception of the first pooling layer, whose kernel size is 1×2×2. The
softmax output layer contains 487 units, one for each class in the original task, whereas the
previous dense layers have 4096 units each. The pretrained model is provided by Tran et al.
(2015).

The chosen methods were: improved trajectories encoded by Fisher vectors (ONEATA; VER-
BEEK; SCHMID, 2013) (IDT-FV) and three dimensional convolutional neural networks (TRAN
et al., 2015) (C3D).

IDT-FV is considered to be the state-of-the-art hand-crafted feature extraction method
for videos and uses the standard approach to video classification: local visual features are used to
describe a region of the video surrounding a set of interest points which are then combined into
a fixed-sized video level description. The C3D method is, to the best of our knowledge, the only
representation learning method that focused on producing generic representations. A pre-trained
neural network trained on the Sports-1M dataset (Section 5.3.1.3) for a sports recognition task
was used to extract the features. The architecture of this network is illustrated by Figure 25.
By using a network that was trained in an entirely different dataset for a different task, it is
possible to evaluate how generic the learnt representations are. This approach also highlights the
possibility of leveraging large datasets to address the lack of labelled data in certain tasks

To extract features using a pre-trained C3D network, a video is split into blocks containing
a predefined number of frames. The user may choose how densely these blocks are sampled by
defining the stride between each block, that is, the number of frames skipped when starting a
new block. If the stride is smaller than the number of frames in a block, the blocks will overlap.
Features are extracted by passing a block through the network and collecting the activation of
one or more fully connected layers, which are then concatenated to create the feature vector that
describes that block. In this experiment, the network was designed to use 16-frame blocks with
stride 1 and the features were extracted using all three fully connected layers, which resulted in a
descriptor of size 8679.

Since IDT-FV extracts a variable number of features from each video and C3D is
capable of extracting features only from fixed-size windows, it is necessary to use a combination
or quantisation method to reduce the number of features to a fixed-size feature vector that
describes the entire video. For IDT-FV, Oneata, Verbeek and Schmid (2013) proposed the use of
Fisher Vector (FV) (SÁNCHEZ et al., 2013) together with a Spatial Pyramid Matching (SPM)

5.2. Experimental setup 93

representation as an alternative to bag-of-words histograms, and achieved state-of-the-art results
using fewer dimensions and linear classifiers. FV is an extension of the Bag-of-Visual-Words
(BOV) that records, for each quantisation cell, the number of assigned descriptors, their mean
and their variance, for each dimension. This results in a feature vector with dimension K(2D+1),
where K is the number of quantisation cells and D is the dimension of the descriptors. Instead
of using k-means clustering to create the dictionary like the BOV method, FV uses a Gaussian
Mixture Model (GMM).

The setup proposed by Oneata, Verbeek and Schmid (2013) also applies a Principal
Component Analysis (PCA), before computing the FV, and selects the first 64 components. This
speeds up the FV computation and, since FV size scales linearly with feature dimension, reduces
the size of the final descriptor. PCA is also useful because it decorrelates the data, improving
the fit of the diagonal co-variance assumption from the Gaussian components. PCA and GMM
are both fitted on a subset of descriptors from the training set. Finally, a `2 normalisation is
applied over all descriptors extracted from a video. In our experiments, a similar setting was
used, where MBH extracts local information for IDT, 64 dimensions were selected using PCA
and a dictionary with k = 1000 words was created using GMM.

Spatio-temporal grids were used to include a weak notion of spatio-temporal location
of the local features into the final descriptor. This was done by using three spatial pyramid
settings: (1,1,1), (1,1,2), (1,3,1), where the first number indicates how many splits were made
in the temporal dimension, the second is related to the number of vertical splits and the last one,
to horizontal splits. Spatial Fisher Vectors (SFV), which computes the mean and variance of
the 3D spatio-temporal location per visual word, of the assigned features, was also used. SFV
provides similar information modelling as the one achieved by extending the feature vectors
to 3D locations (ONEATA; VERBEEK; SCHMID, 2013). These methods are combined by
computing SFV in each SPM cell. The final descriptor is obtained by concatenating all the
extracted feature vectors.

For C3D, Tran et al. (2015) used the average of the representations extracted from all
blocks of frames followed by a `2 normalisation to generate the representation vector for an
entire video. In this experiment we also explore other combination methods besides averaging for
C3D features: voting (when applicable), where each frame-block casts a vote for the class of the
entire video; k-means quantisation, where the k-means algorithm is used to create a dictionary
based on the representations of frame-blocks and the final descriptor is a normalized histogram of
the words in the video; statistical measures, which concatenates the average, standard deviation,
skewness, kurtosis, maximum and minimum computed using all representations extracted from a
video. When applicable, we also classified directly the representation of each block. This allows
for an analysis of the performance of the representations without the influence of a combination
method.

For the classification stage, linear Support Vector Machine (SVM)s (BOSER; GUYON;

94 Chapter 5. Representation generalisation analysis

VAPNIK, 1992) were used due to the guarantees it provides regarding the VC-dimension and
the selection of the maximum margin hyperplane. Since SVMs are designed to work in a binary
classification context, a “one-vs-all” setting was used where a classifier was trained to distinguish
the observations belonging to a single class from all remaining classes (RIFKIN; KLAUTAU,
2004). When a new observation needs to be classified, all classifiers are used and the class
indicated by the one which outputs the most positive value is chosen. The choice of not using
kernels for the SVM was made so that the SVM’s performance shows how linearly separable the
classes are, given a feature space. That way, it is possible to use the results of the classifications
to directly evaluate representation quality.

A grid search approach was used to determine the parameters of the SVM classifier. This
was done by comparing the average results of 5-fold cross-validation experiments using the
training set. That is, the training set was split into five-folds, four of which were used to train a
classifier and the other to evaluate its performance. After cycling through all folds, the average
performance was estimated by using an evaluation measure, such as the F1-score. This was done
for each possible parameter combination in a set of predefined parameters and the combination
with the highest average efficiency was selected for later use.

For linear SVMs, the only parameter that needs to be set is the penalty factor C, which
determines how soft is the margin of the SVM. In other words, the C parameter defines how
important it is to avoid misclassifying training observations. When C is set to a high value, a
hyperplane that better classifies observations from the training set is preferred. Accordingly,
when a small value is selected for C, the algorithm will allow the classifier to make more mistakes
in the training set. For all the reported experiments, the tested values of C were: 1, 10, 100 or
1000.

Classification results were evaluated using F1-score, which performs a statistical analysis
of binary classification by measuring the test’s accuracy considering both its precision (the ability
of the classifier not to label as positive a sample that is negative) and the recall (the ability of
the classifier to find all positive samples). The relative contribution of precision and recall to the
F1-score are equal. It reaches its best value at 1 and worst at 0. The formulas used to compute
precision, recall and F1-score are shown in Equations (5.1), (5.2) and (5.3), respectively.

These evaluation measures are defined in terms derived from a confusion matrix, a table
that allows the user to visualise the performance of a classifier. In the confusion matrix, typically,
each column shows observations that were predicted to be in each class, while each row indicates
their actual classes. The name “confusion matrix” comes from its main functionality, to identify
which pairs of classes the classifier is unable to differentiate. The most used terms computed
from the confusion matrix are:

∙ True positives (tp): number of observations correctly classified on a specific class;

∙ False positives (fp): number of observations wrongly classified on a specific class;

5.3. Datasets 95

∙ True negatives (tn): number of observations correctly classified as not being from a specific
class;

∙ False negatives (fn): number of observations wrongly classified as not being from a specific
class.

Precision =
tp

tp+ fp
(5.1)

Recall =
tp

tp+ fn
(5.2)

F1 = 2 · Precision ·Recall
Precision+Recall

(5.3)

When working on tasks which include more than two classes, a weighted average of
these evaluations measures can be used. This is done by computing the metric for each label
and then finding their average, weighted by the number of instances belonging to each class.
It is important to notice that this may cause the resulting F1-score not be between the values
obtained for precision and recall. When the average µ and standard deviation σ of the F1-score
for multiple classifications are shown, the value of the standard deviation was multiplied by 2.
This was done so that the interval between µ−2 ·σ and µ +2 ·σ contains 95% of all obtained
results.

By using the same setting for every feature extraction method, these classification results
can be used to compare the representation space created by each method. Since the classifier used
during the experiments was a linear SVM, it is possible to say that if a specific class presented a
good classification result, then that class is (mostly) linearly separable from the other classes.
This allows the comparison of multiple feature spaces and the analysis of which classes overlap
in each one of them.

5.3 Datasets

The datasets selected for this set of experiments cover two different tasks: action recog-
nition and dynamic scene recognition; while covering two different domains in each task. For
action recognition, KTH-Actions (Section 5.3.1.2) provides a controlled setting while Holly-
wood2 Actions (Section 5.3.1.1) is completely unconstrained resulting in a more realistic and
challenging domain. Since IDT was proposed to be used for action recognition, it is interesting
to see if the representation learning method will be as efficient as a hand-crafted task-specific
feature extraction method. For the KTH-Actions and Hollywood2 Actions datasets, the selection
of training and test sets was done using the split proposed in their original papers.

96 Chapter 5. Representation generalisation analysis

Scene recognition is the task of classifying the place where an action or event oc-
curs (DERPANIS et al., 2012). The ability to distinguish between scenes can help many different
tasks by providing priors for the presence of actions, surfaces and objects. The Maryland dataset
(Section 5.3.2.1) was built in a way to confuse descriptors that use only spatial information or
only temporal information. Therefore, it is a nice benchmark for the quality of both temporal
and spatial information encoded into a descriptor. The YUPENN dataset (Section 5.3.2.2) pro-
vides a more constrained setting which emphasises short temporal information while restricting
samples to videos shots taken with a single static camera. Maryland and YUPENN datasets were
previously used in a “leave-one-out” setting, so a training and test split was proposed for this
experiments. This split was done by taking advantage of the numbers originally associated with
each video, selecting all odd-numbered videos for training and even-numbered videos for testing.
This resulted in training and test sets of equal size.

5.3.1 Action recognition

5.3.1.1 Hollywood2 Actions

The Hollywood2 Actions dataset (MARSZAŁEK; LAPTEV; SCHMID, 2009) consists
of a set of videos extracted from 69 Hollywood movies divided into 12 classes of human
actions by using automatic script-to-video alignment. Two possible training sets are available: an
automatically separated training subset with noisy action labels and, based on the first subset, a
clean training subset where action labels were manually verified to be correct. The test subset
was also manually verified. With almost 20.1 hours of video, this dataset contains about 150
samples per actions. Since the samples were extracted from videos that were not recorded in a
controlled environment, this dataset provides realistic and challenging circumstances for action
recognition. Example frames of three videos are shown in Figure 26. It is important to notice
that this dataset is unbalanced, so the list of classes and the number of instances in each class of
this dataset is presented on Table 7.

5.3.1.2 KTH-Action

Considered one of the main benchmarks in the area of video processing (LÄNGKVIST;
KARLSSON; LOUTFI, 2014), the KTH-Action dataset (SCHULDT; LAPTEV; CAPUTO, 2004)
is one of the most used datasets to evaluate action recognition systems. It consists of videos of 25
people performing six different actions: walking, jogging, running, boxing, waving and clapping

hands. Each of these actions is performed in four different scenarios: outdoors, outdoors with
scale variations, outdoors with different clothes and indoors. Each footage was divided into
shorter videos, generating a total of 2391 videos with resolution 160×120 pixels. All actions
are performed throughout the entire video. Example frames showing three people, each one
performing a different action in three of the four possible scenarios are shown in Figure 27.

5.3. Datasets 97

(a) Sit down

(b) Sit up

(c) Eat

Figure 26 – Example frames from the Hollywood2 Action dataset.

Table 7 – Distribution of samples on each class of the Hollywood2 (Actions) dataset.

Training set (clean) Training set (automatic) Test set (clean)

AnswerPhone 66 59 64
DriveCar 85 90 102
Eat 40 44 33
FightPerson 54 33 70
GetOutCar 51 40 57
HandShake 32 38 45
HugPerson 64 27 66
Kiss 114 125 103
Run 135 187 141
SitDown 104 87 108
SitUp 24 26 37
StandUp 132 133 146

All Samples 823 810 884

5.3.1.3 Sports-1M

Composed of more than one million videos whose classification was made automatically,
the Sports-1M dataset (KARPATHY et al., 2014) is divided into 487 different categories, where
each category represents a different sport, such as judo, yoga, skiing and wrestling. Due to
the fact that this classification was acquired automatically by looking at each video’s textual
description, the labels are not guaranteed to be correct.

98 Chapter 5. Representation generalisation analysis

(a) Boxing

(b) Hand waving

(c) Running

Figure 27 – Example frames from the KTH-Action dataset. Here three different people are shown per-
forming one of the six different actions included in the dataset in three of the four possible
scenarios.

5.3.2 Dynamic scene recognition

5.3.2.1 Maryland Dynamic Scenes (UMD)

The UMD dynamic scenes dataset (SHROFF; TURAGA; CHELLAPPA, 2010), also
known as Maryland, is an in-the-wild dynamic scenes videos dataset consisting of 13 classes
containing 10 videos per class. Each video was obtained from video hosting websites like
Youtube, so there was no control over the video capturing process, producing a dataset with large
variations in terms of camera resolution, camera dynamics, illumination, frame rate, point of
view and scale. These variations resulted in a high intra-class variation throughout this dataset.

The possible dynamic scene categories are: avalanche, boiling water, chaotic traffic,

forest fire, fountain, iceberg collapse, landslide, smooth traffic, tornado, volcanic eruption,

waterfall, waves and whirlpool. It is important to emphasise that pure static appearance feature
extraction methods used in randomly chosen frames from these videos would result in high
confusion rate between certain classes, such as: avalanche and iceberg collapse; waterfall and
fountain; landslide and volcanic eruption (SHROFF; TURAGA; CHELLAPPA, 2010). By using
only the dynamics of the scenes to extract features, the confusion would occur between the

5.3. Datasets 99

(a) Iceberg collapse

(b) Volcano eruption

(c) Waterfall

Figure 28 – Example frames from the Maryland Dynamic Scenes dataset that represent three of the
thirteen possible scene classes.

following classes: avalanche, landslide and volcanic eruptions; tornado and whirlpool; boiling

water and forest fire (SHROFF; TURAGA; CHELLAPPA, 2010). Figure 28 illustrates three of
the classes contained in this dataset.

5.3.2.2 YUPENN Dynamic Scenes

The YUPENN dynamic scenes video dataset (DERPANIS et al., 2012) was proposed
as a dataset that emphasises a scene’s specific temporal information over a short time duration
due to objects and surfaces rather than camera-induced. This dataset contains 420 colour videos
evenly divided into fourteen dynamic scene categories: beach, city street, elevator, forest fire,

fountain, highway, lightning storm, ocean, railway, rushing river, sky-clouds, snowing, waterfall

and windmill farm. Since the videos were obtained from various sources, they present significant
differences in image resolution, frame rate, scene appearance, scale, illumination conditions and
camera viewpoint. All video samples in the dataset are restricted to stationary cameras and do
not contain scene cuts. Three of the classes in this dataset are illustrated in Figure 29.

100 Chapter 5. Representation generalisation analysis

(a) Beach

(b) City street

(c) Forest fire

Figure 29 – Example frames from the YUPENN Dynamic Scenes dataset illustrating three of the fourteen
possible scenes: beach, forest fire and city street.

5.4 Results

5.4.1 KTH-Actions

On the KTH-Actions dataset, the hand-crafted features performed significantly better
than the ones extracted by the representation learning technique. The overall results are shown in
Table 8. One of the reasons this might have occurred is because IDT was designed specifically
for the task of action recognition. Also, the KTH-Actions dataset is composed of videos recorded
in a controlled setting, not including complex circumstances such as occlusions and camera
motion. Such a constrained environment, together with task-specific knowledge used during the
design of the hand-crafted feature extraction method, explain the difference in the performance
of the evaluated methods.

Even though it did not achieve results as good as the ones of the IDT-FV method, the
features obtained by the C3D method provided a good description of the actions on this dataset
considering the network used did not contain any information about this dataset. This indicates
that the representations learnt were capable of generalising the learnt knowledge to a different
dataset in a similar task. Furthermore, it also shows that training the model in a large dataset is a

5.4. Results 101

Table 8 – Overall results on the KTH-Actions dataset.

IDT-FV
C3D

(Blocks)
C3D

(Voting)

C3D
(k-Means

quantisation)

C3D
(Average)

C3D
(Statistical
moments)

Weighted
F1-score 0.9186 0.8386 0.8823 0.7564 0.8750 0.7902

Table 9 – Grid search results for the IDT-FV method using the KTH-Actions dataset. The highlighted
parameter was the one selected for the remainder of this experiment.

Kernel C
F1-score
(Average)

F1-score
(Standard Deviation)

Linear 1 0.906 0.048
Linear 10 0.932 0.024
Linear 100 0.930 0.023
Linear 1000 0.930 0.023

possible way to compensate for the lack of available data.

Since the videos in KTH-Actions dataset show the same action in almost all frames
of a given video, it is possible to classify each of the 16-frame-blocks described by the C3D
network. This allows a direct evaluation of the extracted features, without the influence of
quantisation/combination methods. Considering that the prediction of each block is relevant
given that the action occurs on almost every frame of the video, it is also possible to use a voting
scheme where each block casts a vote to define the class of the entire video.

The best results using C3D features for the KTH-Actions dataset were achieved by
combining the descriptors through voting and using the average of all block-level representations
in a video. We believe that the good results achieved by using the average of all blocks to describe
a video were due to the actions in KTH-Actions dataset being repeated throughout the video
since all the representations contained relevant information about the video-level label.

5.4.1.1 IDT-FV

After training the SVM on the entire training set and using the parameters selected by
the grid search (whose results can be seen in Table 9), the resulting classifier was applied to the
test set. IDT-FV features performed well in all classes from the KTH-Actions dataset (Table 10),
wherein most of the mistakes were made by confusing observations from the jogging and running

classes. Figure 30 shows the confusion matrix obtained from the final classification.

102 Chapter 5. Representation generalisation analysis

Table 10 – Per class performance of the IDT-FV features on the test set of the KTH-Actions dataset.

Class Precision Recall F1-score
Number of

observations

Boxing 0.9156 0.9860 0.9495 143
Hand clapping 0.9103 0.9167 0.9135 144
Hand waving 1.0000 0.9097 0.9527 144
Jogging 0.8148 0.9167 0.8627 144
Running 0.9421 0.7917 0.8604 144
Walking 0.9533 0.9931 0.9728 144
Average / Total 0.9227 0.9189 0.9186 863

w
al

ki
ng

bo
xi

ng

jo
gg

in
g

ru
nn

in
g

ha
nd

cl
ap

pi
ng

ha
nd

w
av

in
g

Predicted label

walking

boxing

jogging

running

handclapping

handwaving

T
ru

e
 l
a
b
e
l

143 0 1 0 0 0

1 141 0 0 1 0

5 0 132 7 0 0

1 0 29 114 0 0

0 12 0 0 132 0

0 1 0 0 12 131

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 30 – Confusion matrix obtained by using a SVM classifier on the descriptor extracted by the
IDT-FV method on the KTH-Actions dataset. The training and testing split was proposed
by Schuldt, Laptev and Caputo (2004). The colours indicate the percentage of observations
from each class contained in each cell.

5.4.1.2 C3D

5.4.1.2.1 Classification of 16-frame blocks

Table 11 shows the weighted average and standard deviation of the F1-score resulting
from the 5-fold cross-validation performed on the training set during the grid search used to
define the C parameter of the SVM. Since all the tested parameters achieved the same results, C

was set to the smallest value, that is, C = 1.

From the per class results shown on Table 12 and the confusion matrix on Figure 31, it is
possible to see that C3D features had difficulties to differentiate between observations from the

5.4. Results 103

Table 11 – Grid search results while classifying the 16-frame blocks descriptors extracted by the C3D
method from the KTH-Actions dataset. The highlighted parameter was the one selected for the
remainder of this experiment.

Kernel C
F1-score
(Average)

F1-score
(Standard Deviation)

Linear 1 0.840 0.030
Linear 10 0.840 0.030
Linear 100 0.840 0.030
Linear 1000 0.840 0.030

Table 12 – Per class performance of the C3D features on the test set of the KTH-Actions dataset when
classifying the 16-frame blocks individually.

Class Precision Recall F1-score
Number of

observations

Boxing 0.9747 0.9678 0.9712 13123
Hand clapping 0.8660 0.9611 0.9111 12645
Hand waving 0.9709 0.8767 0.9214 15594
Jogging 0.5287 0.5755 0.5511 7454
Running 0.5995 0.7257 0.6565 4826
Walking 0.8156 0.7233 0.7667 12894
Average / Total 0.8451 0.8363 0.8386 66536

walking, jogging and running classes and, to lesser extent, between observations from the hand

clapping and hand waving classes. This may indicate that the representations learnt by the C3D
network trained on the Sports-1M dataset do not describe well the differences in velocity.

It is important to notice that the number of observations in this experiment indicates the
total number of 16-frame-blocks extracted for each class. Since the videos in the KTH-Actions
dataset have different lengths, the classification task had to deal with some unbalanced class
distribution.

5.4.1.2.2 Combination by voting

To perform voting combination to achieve a video-level prediction from 16-frame-blocks
predictions, each block needs to be classified individually, so, the parameter selected to train this
classifier was the same as the one used in the previous experiment (C = 1, as shown in Table 11).
After classifying each 16-frame-block, a video’s prediction was defined by the class with the
highest number of block predictions. This resulted in the per-class performance displayed in
Table 13. As expected, the overall performance improved from the previous experiment, since
mistakes made on a few blocks from a video do not influence the final chosen class. Most
errors committed by the final classification were still between the classes walking, jogging and
running, while the number of mistakes made regarding other classes was considerably reduced

104 Chapter 5. Representation generalisation analysis

w
al

ki
ng

bo
xi

ng

jo
gg

in
g

ru
nn

in
g

ha
nd

cl
ap

pi
ng

ha
nd

w
av

in
g

Predicted label

walking

boxing

jogging

running

handclapping

handwaving

T
ru

e
 l
a
b
e
l

9326 0 2959 609 0 0

208 12700 10 0 195 10

1432 1 4290 1731 0 0

468 0 856 3502 0 0

0 92 0 0 12153 400

0 236 0 0 1686 13672

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 31 – Confusion matrix obtained by classifying the 16-frame blocks extracted by C3D from the
KTH-Actions dataset using the training and testing split proposed by Schuldt, Laptev and
Caputo (2004). The colours indicate the percentage of observations from each class contained
in each table cell.

Table 13 – Per class performance of the C3D features on the test set of the KTH-Actions dataset when
choosing the majority class from the 16-frame blocks classification.

Class Precision Recall F1-score
Number of

observations

Boxing 0.9929 0.9790 0.9859 143
Hand clapping 0.9793 0.9861 0.9827 144
Hand waving 0.9859 0.9722 0.9790 144
Jogging 0.7273 0.6667 0.6957 144
Running 0.7987 0.8542 0.8255 144
Walking 0.8121 0.8403 0.8259 144
Average / Total 0.8826 0.8830 0.8823 863

when compared to the evaluation performed on individual blocks (Section 5.4.1.2.1). These
conclusions supported by the analysis of the confusion matrix shown on Figure 32.

5.4.1.2.3 Combination by k-means quantisation

Combination by using k-means quantisation (k = 1000) to build a dictionary of words
from the 16-frame blocks did not perform well. It increased the confusion between classes such
as hand clapping and hand waving, while still mistaking observations from the classes walking,
jogging and running. Grid search for hyper-parameter selection and per class results on the test
set are shown in Table 14 and 15, respectively; while Figure 33 illustrates the confusion matrix

5.4. Results 105

w
al

ki
ng

bo
xi

ng

jo
gg

in
g

ru
nn

in
g

ha
nd

cl
ap

pi
ng

ha
nd

w
av

in
g

Predicted label

walking

boxing

jogging

running

handclapping

handwaving

T
ru

e
 l
a
b
e
l

121 0 23 0 0 0

3 140 0 0 0 0

16 0 97 31 0 0

8 0 13 123 0 0

0 0 0 0 142 2

0 1 0 0 3 140

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 32 – Confusion matrix obtained by choosing the majority class from the 16-frame blocks clas-
sification extracted with the C3D method from the KTH-Actions dataset. Training and test
sets as defined by Schuldt, Laptev and Caputo (2004). The colours indicate the percentage of
observations from each class contained in each table cell.

Table 14 – Grid search results obtained after applying k-means quantisation on the descriptors extracted
by the C3D method from the KTH-Actions dataset. The highlighted parameter was the one
selected for the remainder of this experiment.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.214 0.040
Linear 10 0.215 0.044
Linear 100 0.203 0.079
Linear 1000 0.191 0.096

relative to the final classification of the test set.

5.4.1.2.4 Combination by average

For the combination by average approach, grid search returned the same result for all
the hyper-parameters tested, so, the smallest parameter value was selected to be used (C = 1
– Table 16). Table 17 shows that the boxing class was almost perfectly classified. The hand

clapping and hand waving classes also achieved good performances, wherein mistakes were only
made by wrongly classifying hand waving observations as hand clapping (information available
in the confusion matrix – Figure 34).

By combining the 16-frame-blocks’ descriptors using the average of all blocks in a video,
the SVM classifier achieved the second-best results on the KTH-Actions dataset, following

106 Chapter 5. Representation generalisation analysis

Table 15 – Per class performance of the C3D features on the test set of the KTH-Actions dataset when
using 16-frame blocks to create a dictionary using the k-means algorithm. A histogram of this
dictionary is then used as the descriptors for the classification.

Class Precision Recall F1-score
Number of

observations

Boxing 0.9688 0.8671 0.9151 143
Hand clapping 0.8897 0.8403 0.8643 144
Hand waving 0.8750 0.8750 0.8750 144
Jogging 0.4800 0.5000 0.4898 144
Running 0.6918 0.7639 0.7261 144
Walking 0.6644 0.6736 0.6690 144
Average / Total 0.7614 0.7532 0.7564 863

w
al

ki
ng

bo
xi

ng

jo
gg

in
g

ru
nn

in
g

ha
nd

cl
ap

pi
ng

ha
nd

w
av

in
g

Predicted label

walking

boxing

jogging

running

handclapping

handwaving

T
ru

e
 l
a
b
e
l

97 0 46 1 0 0

6 124 2 0 5 6

26 0 72 46 0 0

7 0 27 110 0 0

5 3 3 0 121 12

5 1 0 2 10 126

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 33 – Confusion matrix obtained by using the k-means quantisation on the 16-frame blocks clas-
sification extracted with the C3D method from the KTH-Actions dataset. Training and test
sets as defined by Schuldt, Laptev and Caputo (2004). The colours indicate the percentage of
observations from each class contained in each table cell.

closely the results achieved using combination by voting. The confusion matrix, shown in
Figure 34, indicates that most of the mistakes were made on the following classes: walking,
jogging and running; hand clapping and hand waving. It is important to highlight that in the
videos from the KTH-Actions dataset, each action is performed repeatedly throughout the entire
video, which might have benefited the combination by average. However, by using this approach,
relevant information, like high and low values, might be disregarded.

5.4. Results 107

Table 16 – Grid search results obtained after using the average of the descriptors extracted by the C3D
method to describe each video from the KTH-Actions dataset. The highlighted parameter was
the one selected for the remainder of this experiment.

Kernel C
F1-score
(Average)

F1-score
(Standard Deviation)

Linear 1 0.890 0.108
Linear 10 0.890 0.108
Linear 100 0.890 0.108
Linear 1000 0.890 0.108

Table 17 – Per class performance in the KTH-Actions dataset using C3D features averaged over all
16-frame blocks to obtain a video-level descriptor.

Class Precision Recall F1-score
Number of

observations

Boxing 1.0000 0.9930 0.9965 143
Hand clapping 0.8623 1.0000 0.9260 144
Hand waving 1.0000 0.8472 0.9173 144
Jogging 0.7426 0.7014 0.7214 144
Running 0.7530 0.8681 0.8065 144
Walking 0.9308 0.8403 0.8832 144
Average / Total 0.8813 0.8749 0.8750 863

Table 18 – Grid search results obtained by using the concatenation of statistical measures of the represen-
tations extracted by the C3D method to describe each video from the KTH-Actions dataset.
The highlighted parameter was the one selected for the remainder of this experiment.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.834 0.043
Linear 10 0.834 0.043
Linear 100 0.834 0.043
Linear 1000 0.834 0.043

5.4.1.2.5 Combination by statistical measures

When using the concatenation of multiple statistical measures (average, standard de-
viation, skewness, kurtosis, minimum and maximum), overall performance was considerably
lower than when combining using only the average of representation of all 16-frame blocks in
a video. Grid search and evaluation results are shown in Tables 18 and 19, respectively. The
confusion matrix in Figure 35 shows that this combination method hindered the ability of the
SVM classifier to differentiate between the classes: walking, jogging and running; hand clapping

and hand waving. It also caused the SVM to confuse observations from the hand clapping and
hand waving classes with the boxing class.

108 Chapter 5. Representation generalisation analysis

w
al

ki
ng

bo
xi

ng

jo
gg

in
g

ru
nn

in
g

ha
nd

cl
ap

pi
ng

ha
nd

w
av

in
g

Predicted label

walking

boxing

jogging

running

handclapping

handwaving

T
ru

e
 l
a
b
e
l

121 0 18 5 0 0

0 142 0 0 1 0

7 0 101 36 0 0

2 0 17 125 0 0

0 0 0 0 144 0

0 0 0 0 22 122

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 34 – Confusion matrix obtained by classifying the test set of the KTH-Actions dataset using the
average representation extracted by the C3D method over all 16-frame blocks. Training and
test sets as defined by Schuldt, Laptev and Caputo (2004). The colours indicate the percentage
of observations from each class contained in each table cell.

Table 19 – Per class performance on the KTH-Actions dataset of C3D features when using the concatena-
tion of statistical measures to combine the descriptors of 16-frame blocks for the videos.

Class Precision Recall F1-score
Number of

observations

Boxing 0.8551 0.8252 0.8399 143
Hand clapping 0.6915 0.9028 0.7831 144
Hand waving 0.9100 0.6319 0.7459 144
Jogging 0.6842 0.7222 0.7027 144
Running 0.7922 0.8472 0.8188 144
Walking 0.8931 0.8125 0.8509 144
Average / Total 0.8043 0.7903 0.7902 863

5.4.2 Hollywood2 Actions

For Hollywood2 Actions, the overall results were similar to the ones achieved on KTH-
Actions, with IDT-FV features performing significantly better than C3D features. Again, we
believe that this happened because IDT-FV was designed using task-specific information. The
weighted average of the F1-score obtained by each method is shown in Table 20.

Since labels don’t include timestamps, it is not possible to guarantee that the actions
are performed in every 16-frame-block, so, classifying each 16-frame-block individually and
combining block-level predictions by voting is not applicable. Considering the other evaluated
combination methods for C3D representations, combination by averaging obtained the best

5.4. Results 109

w
al

ki
ng

bo
xi

ng

jo
gg

in
g

ru
nn

in
g

ha
nd

cl
ap

pi
ng

ha
nd

w
av

in
g

Predicted label

walking

boxing

jogging

running

handclapping

handwaving

T
ru

e
 l
a
b
e
l

117 0 27 0 0 0

0 118 0 3 16 6

13 0 104 27 0 0

1 0 21 122 0 0

0 9 0 2 130 3

0 11 0 0 42 91

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 35 – Confusion matrix obtained by classifying the test set of the KTH-Actions dataset using
the concatenation of statistical measures computed using the 16-frame blocks descriptors
extracted by the C3D method. Training and test sets as defined by Schuldt, Laptev and Caputo
(2004). The colours indicate the percentage of observations from each class contained in each
table cell.

Table 20 – Overall results on the Hollywood2 Actions dataset.

IDT-FV
C3D

(Blocks)
C3D

(Voting)

C3D
(k-Means

quantisation)

C3D
(Average)

C3D
(Statistical
Moments)

Weighted
F1-score 0.5097 - - 0.2864 0.4016 0.3251

performance. Even so, its F1-score was around 10% lower than the result achieved by the IDT-
FV method. The overall results indicate the high complexity of the problem proposed by the
Hollywood2 Actions dataset.

Since the actions occur in videos in a sparse manner, it is possible that the performance
of classifiers trained on C3D representations were affected by the combination methods. The
best performing combination method was the average, which results in a descriptor which
disregards information that appears in a small number of 16-frame-blocks. Given that most
videos in the Hollywood2 Actions dataset are substantially longer than the actions in them,
relevant information for the action recognition task was probably lost. Another possible reason
for the low performance obtained by C3D’s representations is that the actions contained in
Hollywood2 Actions are too different from the ones on the dataset used to train the network
(Sports-1M), which made the learnt knowledge not generalise well to the new dataset/task.

110 Chapter 5. Representation generalisation analysis

Table 21 – Grid search results for the IDT-FV method using the Hollywood2 Actions dataset. The
highlighted parameter was the one selected for the remainder of this experiment.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.107 0.047
Linear 10 0.330 0.044
Linear 100 0.469 0.041
Linear 1000 0.479 0.012

Table 22 – Per class performance of the IDT-FV features on the test set of the Hollywood2 Actions
dataset.

Class Precision Recall F1-score
Number of

observations

AnswerPhone 0.3095 0.2031 0.2453 64
DriveCar 0.7143 0.8824 0.7895 102
Eat 0.3800 0.5758 0.4578 33
FightPerson 0.4815 0.7429 0.5843 70
GetOutCar 0.5405 0.3509 0.4255 57
HandShake 0.3750 0.0667 0.1132 45
HugPerson 0.2812 0.1364 0.1837 66
Kiss 0.3631 0.5922 0.4502 103
Run 0.7172 0.7376 0.7273 141
SitDown 0.5917 0.6574 0.6228 108
SitUp 0.1429 0.0270 0.0455 37
StandUp 0.6124 0.5411 0.5745 146
Average / Total 0.5168 0.5370 0.5097 972

5.4.2.1 IDT-FV

When using the IDT-FV method to extract features from the Hollywood2 Actions
dataset, the grid search selected C = 1000 as the best parameter, according to a 5-fold cross-
validation in the training set (Table 21). The per class results, shown in Table 22, and confusion
matrix (Figure 36) indicate that some classes, such as kiss and answerPhone, presented a high
overlapping rate with other classes, which hampered the performance of the SVM classifier.
The handShake, sitUp and hugPerson classes were heavily confused with other classes, causing
them to be almost completely misclassified. On the other hand, the classes driveCar, run and
fightPerson presented good classification results, probably due to being visually different from
other classes in the dataset.

5.4. Results 111

ha
nd

Sh
ak

e
ge

tO
ut

C
ar ru
n

fig
ht

Pe
rs

on ea
t

si
tU

p

ki
ss

st
an

dU
p

an
sw

er
Ph

on
e

dr
iv

eC
ar

hu
gP

er
so

n
si

tD
ow

n

Predicted label

handShake

getOutCar

run

fightPerson

eat

sitUp

kiss

standUp

answerPhone

driveCar

hugPerson

sitDown

T
ru

e
 l
a
b
e
l

3 2 0 1 5 0 16 2 1 3 4 8

1 20 10 2 2 0 5 7 0 10 0 0

0 1 104 21 0 0 1 4 2 5 1 2

0 0 9 52 0 0 0 4 2 1 1 1

0 0 0 0 19 0 4 4 0 1 1 4

0 1 0 4 2 1 9 13 1 3 2 1

1 2 1 6 2 3 61 4 3 6 8 6

0 6 9 13 6 1 17 79 5 2 1 7

2 1 2 0 10 0 10 6 13 3 4 13

0 1 3 1 0 1 3 0 0 90 1 2

1 2 3 6 1 1 27 2 7 2 9 5

0 1 4 2 3 0 15 4 8 0 0 71
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 36 – Confusion matrix obtained by using the IDT-FV feature extraction on the Hollywood2
Actions dataset. The splits used for training and testing were proposed by (MARSZAŁEK;
LAPTEV; SCHMID, 2009). The colours indicate the percentage of observations from each
class contained in each table cell.

5.4.2.2 C3D

5.4.2.2.1 Combination by k-means quantisation

The results obtained by using k-means quantisation to combine the descriptors of the
16-frame blocks were remarkably lower than the ones obtained by the IDT-FV method and when
combining C3D features by averaging. After defining the parameter C of the SVM classifier as
10, according to the results of the grid search presented in Table 23, the classifier was evaluated
in the test set (Table 24).

By analysing these results and the confusion matrix shown in Figure 37, it is noticeable
that the classifier was unable to correctly classify almost any class, mistaking them with the
either kiss, standUp or sitDown. Also, eat was completely misclassified. This indicates that
the classes in this dataset were not well described in this feature space since most of them
are probably concentrated in the same region, making it impossible for a linear classifier to
distinguish between them.

5.4.2.2.2 Combination by average

Since all results from the grid search achieved the same average performance when using
combination by average (F1-score – Average: 0.353, Standard deviation: 0.071), the smallest
tested parameter value was chosen (C = 1). In Table 25, the performance of the classification
is shown for each class by using the evaluation measures: precision, recall and F1-score. The

112 Chapter 5. Representation generalisation analysis

Table 23 – Results from the grid search when using k-means quantisation to combine the descriptors
extracted by C3D from the Hollywood2 Actions dataset. The highlighted parameter was the
one selected for the remainder of this experiment.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.147 0.076
Linear 10 0.185 0.073
Linear 100 0.181 0.054
Linear 1000 0.170 0.051

Table 24 – Evaluation of the performance of k-means quantisation as a combination method for the
features extracted by C3D from the Hollywood2 Actions dataset.

Class Precision Recall F1-score
Number of

observations

AnswerPhone 0.1364 0.1875 0.1579 64
DriveCar 0.6049 0.4804 0.5355 102
Eat 0.0000 0.0000 0.0000 33
FightPerson 0.2750 0.1571 0.2000 70
GetOutCar 0.0968 0.0526 0.0682 57
HandShake 0.2500 0.0222 0.0408 45
HugPerson 0.2414 0.1061 0.1474 66
Kiss 0.3387 0.4078 0.3700 103
Run 0.4346 0.7305 0.5450 141
SitDown 0.1667 0.2222 0.1905 108
SitUp 0.2500 0.1622 0.1967 37
StandUp 0.2683 0.3014 0.2839 146
Average / Total 0.2932 0.3107 0.2864 972

analysis of this results, together with the information available in the confusion matrix (Figure 38),
lead to the conclusion that the classes answerPhone and sitUp were the most difficult to classify.
Also, there was a high number of fightPerson observations being misclassified as being run. Most
mistakes were made by wrongly assigning observations to standUp, hugPerson and sitDown.

5.4.2.2.3 Combination by statistical measures

As what happened with the combination by average, the grid search resulted in the
same results all for hyper-parameters evaluated, so C was set to 1 (F1-score – Average: 0.300,
Standard deviation: 0.055). The classification performance (seen in Table 26 and through the
confusion matrix in Figure 39) was deeply compromised by the use of combination by statistical
measures. answerPhone, handShake, hugPerson and sitUp were completely misclassified. Nearly
all observations were classified as being from classes standUp, sitDown and kiss. We believe
this might have happened because of non-linearities inserted into the descriptor by the statistical
measures used.

5.4. Results 113

ha
nd

Sh
ak

e
ge

tO
ut

C
ar ru
n

si
tU

p
dr

iv
eC

ar ea
t

an
sw

er
Ph

on
e

ki
ss

st
an

dU
p

fig
ht

Pe
rs

on
hu

gP
er

so
n

si
tD

ow
n

Predicted label

handShake

getOutCar

run

sitUp

driveCar

eat

answerPhone

kiss

standUp

fightPerson

hugPerson

sitDown

T
ru

e
 l
a
b
e
l

1 2 2 0 0 0 11 1 7 0 3 18

0 3 27 1 21 0 1 0 3 0 1 0

0 2 103 0 0 0 3 2 8 12 3 8

0 2 3 6 0 1 2 10 11 1 0 1

0 7 16 2 49 1 5 14 5 0 0 3

0 0 1 0 2 0 4 4 8 0 0 14

1 2 3 0 1 2 12 8 18 2 1 14

0 3 8 6 3 0 1 42 11 4 6 19

0 6 19 1 1 1 23 8 44 5 4 34

0 2 42 2 1 0 4 2 6 11 0 0

0 1 6 2 1 0 3 26 8 3 7 9

2 1 7 4 2 1 19 7 35 2 4 24
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 37 – Classification results on the test set of the Hollywood2 Actions dataset after applying k-means
quantisation combination to features extracted by C3D, presented as a confusion matrix.

Table 25 – Per class evaluation of the C3D descriptors combined using the average for videos in the
test set of the Hollywood2 Actions dataset. These results were obtained using a linear SVM
classifier on a “one-vs-all” setting.

Class Precision Recall F1-score
Number of

observations

AnswerPhone 0.2115 0.1719 0.1897 64
DriveCar 0.7453 0.7745 0.7596 102
Eat 0.2703 0.3030 0.2857 33
FightPerson 0.4062 0.3714 0.3881 70
GetOutCar 0.4833 0.5088 0.4957 57
HandShake 0.3226 0.2222 0.2632 45
HugPerson 0.2097 0.1970 0.2031 66
Kiss 0.4334 0.5340 0.4783 103
Run 0.6242 0.6596 0.6414 141
SitDown 0.2080 0.2407 0.2232 108
SitUp 0.4444 0.1081 0.1739 37
StandUp 0.2733 0.2808 0.2770 146
Average / Total 0.4056 0.4084 0.4016 972

5.4.3 Maryland Dynamic Scenes

For the Maryland dataset, which focuses on the task of dynamic scene recognition, the
features learnt by C3D achieved results more than 25% better than when using IDT-FV to extract
features. The different methods used to combine the 16-frame-block descriptors from the C3D
method also showed very different performances, reaching a difference of more than 60% when

114 Chapter 5. Representation generalisation analysis

ha
nd

Sh
ak

e
ge

tO
ut

C
ar ru
n

si
tU

p
dr

iv
eC

ar ea
t

an
sw

er
Ph

on
e

ki
ss

st
an

dU
p

fig
ht

Pe
rs

on
hu

gP
er

so
n

si
tD

ow
n

Predicted label

handShake

getOutCar

run

sitUp

driveCar

eat

answerPhone

kiss

standUp

fightPerson

hugPerson

sitDown

T
ru

e
 l
a
b
e
l

10 1 0 0 2 3 6 4 8 1 1 9

1 29 4 0 14 1 0 1 5 2 0 0

2 7 93 0 1 0 2 1 9 17 0 9

0 2 0 4 2 2 2 4 8 2 8 3

1 6 1 0 79 2 3 7 1 0 1 1

0 2 1 0 0 10 4 2 5 0 2 7

3 0 2 0 0 6 11 6 18 0 4 14

0 2 1 0 5 2 2 55 10 2 14 10

6 4 15 2 0 3 9 12 41 11 11 32

2 3 28 0 2 0 0 0 7 26 0 2

3 1 1 1 1 1 0 24 7 2 13 12

3 3 3 2 0 7 13 11 31 1 8 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 38 – Results of the classification using SVM classifiers on the descriptors extracted by C3D and
combined using average for video-level prediction on the Hollywood2 Actions dataset (shown
as a confusion matrix).

Table 26 – Per class performance of C3D features when using concatenation of statistical measures to
combine the descriptors of 16-frame blocks for the videos in the Hollywood2 Actions dataset.

Class Precision Recall F1-score
Number of

observations

AnswerPhone 0.0000 0.0000 0.0000 64
DriveCar 0.8281 0.5196 0.6386 102
Eat 0.8000 0.1212 0.2105 33
FightPerson 0.4286 0.4714 0.4490 70
GetOutCar 0.2941 0.1754 0.2198 57
HandShake 0.0000 0.0000 0.0000 45
HugPerson 0.0000 0.0000 0.0000 66
Kiss 0.3717 0.4078 0.3889 103
Run 0.5772 0.6099 0.5931 141
SitDown 0.1818 0.2407 0.2072 108
SitUp 0.0000 0.0000 0.0000 37
StandUp 0.2567 0.6575 0.3692 146
Average / Total 0.3440 0.3601 0.3251 972

comparing the best and worst combination methods. The overall results are presented in Table 27.

We believe that the low performance obtained when using features extracted with IDT-
FV was probably due to the high intra-class variation on the videos in this dataset. Also, since
the IDT-FV method was initially proposed for action recognition, it is expected that, when it
is applied to different tasks like dynamic scene recognition, the results will not be as good as

5.4. Results 115

ha
nd

Sh
ak

e
ge

tO
ut

C
ar ru
n

si
tU

p
dr

iv
eC

ar ea
t

an
sw

er
Ph

on
e

ki
ss

st
an

dU
p

fig
ht

Pe
rs

on
hu

gP
er

so
n

si
tD

ow
n

Predicted label

handShake

getOutCar

run

sitUp

driveCar

eat

answerPhone

kiss

standUp

fightPerson

hugPerson

sitDown

T
ru

e
 l
a
b
e
l

0 0 1 0 0 0 0 4 21 1 0 18

0 10 15 0 4 0 0 2 24 2 0 0

0 5 86 0 0 0 0 1 33 9 0 7

0 1 1 0 0 0 2 4 23 0 1 5

0 10 5 0 53 1 1 11 8 13 0 0

0 2 0 0 0 4 0 4 2 3 2 16

0 0 1 0 0 0 0 3 40 0 0 20

0 0 1 0 5 0 1 42 33 3 3 15

0 2 9 0 0 0 1 11 96 3 0 24

0 1 25 0 1 0 0 0 8 33 2 0

0 1 2 0 1 0 0 25 19 6 0 12

0 2 3 0 0 0 0 6 67 4 0 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 39 – Confusion matrix of the prediction made by linear SVMs classifying the videos from the
Hollywood2 Actions dataset using descriptors extracted by C3D and combined using the
concatenation of multiple statistical measures.

Table 27 – Overall results on the Maryland dataset.

IDT-FV
C3D

(Blocks)
C3D

(Voting)

C3D
(k-Means

quantisation)

C3D
(Average)

C3D
(Statistical
Moments)

Weighted
F1-score 0.4750 0.7436 0.7768 0.2614 0.7448 0.1382

when used for the task it was designed for. The performance might be improved if different local
feature extraction methods, like HOG, HOF or SIFT were used instead of MBH, or if multiple
local feature extraction methods were used at the same time (and combined by concatenation).

Regarding C3D representations, the efficiency was satisfactory when classifying 16-
frame-blocks individually and when the combination of the descriptors was done using averaging
or voting. For descriptors created using k-means quantisation and combination by statistical
measures, the classifier performed poorly, which indicates the importance of selecting a suitable
combination method. C3D representations could probably be further improved by fine-tuning
the network on the new dataset, that is, by adjusting the parameters of the pre-trained network
through back-propagation on the new dataset, and by increasing the resolution of the inputs used
in the network. Since dynamic scene recognition and sports recognition are very different tasks,
the good performance achieved by the C3D representations show that the learnt features are
capable of generalising to a completely different task, even without performing any fine-tuning.

116 Chapter 5. Representation generalisation analysis

Table 28 – Grid search results for IDT-FV representations extracted from the Maryland dataset. The
highlighted parameter was the one selected to be used during the rest of this experiment.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.178 0.107
Linear 10 0.224 0.216
Linear 100 0.325 0.207
Linear 1000 0.337 0.189

Table 29 – Per class performance of IDT-FV representations on the test set of the Maryland dataset.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Avalanche (Aval) 0.0000 0.0000 0.0000 5
Boiling water (Boil) 1.0000 0.6000 0.7500 5
Chaotic traffic (cTraffic) 0.6667 0.8000 0.7273 5
Forest fire (fFire) 0.2500 0.2000 0.2222 5
Fountain 0.2500 0.2000 0.2222 5
Iceberg collapse (icebergc) 0.3333 0.4000 0.3636 5
Landslide 0.3333 0.2000 0.2500 5
Smooth traffic (smTraffic) 0.6000 0.6000 0.6000 5
Tornado 0.5000 0.6000 0.5455 5
Volcano eruption (vEruption) 0.5000 0.8000 0.6154 5
Waterfall 1.0000 0.6000 0.7500 5
Waves 0.5714 0.8000 0.6667 5
Whirlpool 0.3750 0.6000 0.4615 5
Average / Total 0.4908 0.4923 0.4750 65

5.4.3.1 IDT-FV

After using grid search to define the best hyper-parameters for the SVM model (Table 28),
the evaluation results on the test set are shown in Table 29 for each class of the Maryland
dataset. These results and the confusion matrix displayed in Figure 40 were obtained by using
the descriptors extracted using IDT-FV. It is possible to notice that IDT-FV descriptors had
difficulties describing the Forest fire, Fountain, Landslide, Iceberg collapse and Avalanche,
wherein the Avalanche class was completely misclassified.

5.4.3.2 C3D

5.4.3.2.1 Classification of 16-frame blocks

After performing grid search to find the best value for the C hyper-parameter of the
SVM classifier (which resulted in using C = 1 since all values of C achieved the same F1-score –
0.919±0.153), the resulting classifier was evaluated on a previously unseen test set. Considering

5.4. Results 117

ic
eb

er
gc

to
rn

ad
o

ff
ir
e

cT
ra

ff
ic

av
al

w
at

er
fa

ll
fo

un
ta

in
sm

Tr
af

fic
w

av
es

vE
rr

up
tio

n
la

nd
sl

id
e

bo
il

w
hi

rl
po

ol

Predicted label

icebergc

tornado

ffire

cTraffic

aval

waterfall

fountain

smTraffic

waves

vErruption

landslide

boil

whirlpool

T
ru

e
 l
a
b
e
l

2 0 0 0 0 0 1 0 1 0 1 0 0

1 3 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1 0 0 2

0 0 0 4 0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 2 0 0 1

0 0 0 0 0 3 0 0 0 1 1 0 0

0 1 1 0 1 0 1 1 0 0 0 0 0

1 0 0 1 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 4 0 0 0 1

1 0 0 0 0 0 0 0 0 4 0 0 0

0 0 0 0 1 0 0 1 1 0 1 0 1

0 0 1 0 0 0 1 0 0 0 0 3 0

1 0 0 0 0 0 1 0 0 0 0 0 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 40 – Confusion matrix obtained by using IDT-FV representations from the Maryland dataset. The
colours indicate the percentage of observations from each class contained in each table cell.

that the number of observations in this experiment is the number of 16-frame-blocks extracted
from videos in the Maryland dataset and by analysing the results for each class presented in
Table 30 and the confusion matrix in Figure 41, one can conclude that C3D was able to learn a
feature space that provides good intra-class separability.

In this feature space, the biggest overlaps occur between the classes: Iceberg collapse

and Waves; Fountain and Whirlpool; Smooth traffic and Chaotic traffic; Whirlpool and Landslide.
Some of these classes are clearly similar, for example, Smooth traffic and Chaotic traffic obser-
vations both portray city streets containing cars and motorcycles, while most Iceberg collapse

observations also include Waves. The remaining classes are almost completely linearly separable
from the others.

5.4.3.2.2 Combination by voting

Since combination by voting demands every 16-frame-blocks to be classified and the
combination is only done later, the grid search is unnecessary once the best parameter for the
classification of 16-frame-blocks was already selected. Table 31 shows that by combining the
predictions using a voting approach the mistakes made during the previous classification were
reduced and some classes reached a perfect precision and/or a perfect recall. By also analysing
the confusing matrix in Figure 42, we can see that the most misclassified observations belonged to

118 Chapter 5. Representation generalisation analysis

Table 30 – Per class performance of C3D representations from the Maryland dataset’s test set when
classifying each 16-frame blocks independently.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Avalanche (Aval) 0.6949 0.8801 0.7766 2101
Boiling water (Boil) 0.8567 0.8362 0.8463 1337
Chaotic traffic (cTraffic) 0.7809 0.9887 0.8726 7370
Forest fire (fFire) 0.9745 0.7957 0.8760 3553
Fountain 0.8092 0.4976 0.6162 2046
Iceberg collapse (icebergc) 0.4728 0.2617 0.3369 1960
Landslide 0.3728 0.6790 0.4813 1726
Smooth traffic (smTraffic) 0.9897 0.5942 0.7347 5277
Tornado 0.8450 0.9866 0.9103 5381
Volcano eruption (vEruption) 0.7741 0.7163 0.7441 2665
Waterfall 0.6550 0.9419 0.7727 1566
Waves 0.5487 0.9923 0.7067 1697
Whirlpool 0.7665 0.4376 0.5571 5107
Average / Total 0.7838 0.7533 0.7436 41786

Table 31 – Per class performance of C3D descriptors on the test set of the Maryland dataset when choosing
the majority predicted class from the 16-frame blocks in each video.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Avalanche (Aval) 0.7143 1.0000 0.8333 5
Boiling water (Boil) 1.0000 0.8000 0.8889 5
Chaotic traffic (cTraffic) 0.7143 1.0000 0.8333 5
Forest fire (fFire) 1.0000 0.8000 0.8889 5
Fountain 1.0000 0.6000 0.7500 5
Iceberg collapse (icebergc) 0.5000 0.4000 0.4444 5
Landslide 0.7500 0.6000 0.6667 5
Smooth traffic (smTraffic) 1.0000 0.6000 0.7500 5
Tornado 0.8333 1.0000 0.9091 5
Volcano eruption (vEruption) 0.8000 0.8000 0.8000 5
Waterfall 0.7143 1.0000 0.8333 5
Waves 0.7143 1.0000 0.8333 5
Whirlpool 0.7500 0.6000 0.6667 5
Average / Total 0.8070 0.7846 0.7768 65

Iceberg collapse, which were confused with observations from similar classes: Waves, Waterfall,
Landslide and Volcano eruption.

The only other classes that shared more than one mistake was the Chaotic traffic and
Smooth traffic classes, which are also clearly related. This indicates that the learnt features are
capable of capturing relevant information about each class and that these representations describe
each observation in a similar way to what a human would, placing similar classes close together.

5.4. Results 119

ic
eb

er
gc

to
rn

ad
o

ff
ir
e

cT
ra

ff
ic

av
al

w
at

er
fa

ll
fo

un
ta

in
sm

Tr
af

fic
w

av
es

vE
rr

up
tio

n
la

nd
sl

id
e

bo
il

w
hi

rl
po

ol

Predicted label

icebergc

tornado

ffire

cTraffic

aval

waterfall

fountain

smTraffic

waves

vErruption

landslide

boil

whirlpool

T
ru

e
 l
a
b
e
l

513 0 0 0 19 57 0 0 1371 0 0 0 0

0 5309 0 0 0 0 72 0 0 0 0 0 0

0 720 2827 0 0 0 0 0 0 6 0 0 0

0 51 0 7287 0 0 0 32 0 0 0 0 0

0 0 0 0 1849 21 0 0 14 162 55 0 0

0 0 0 0 0 1475 91 0 0 0 0 0 0

0 0 0 0 19 326 1018 0 0 0 7 0 676

0 137 0 2035 10 0 12 3083 0 0 0 0 0

11 0 0 0 0 0 0 0 1684 2 0 0 0

434 48 74 0 200 0 0 0 0 1909 0 0 0

127 18 0 0 119 140 0 0 0 150 1172 0 0

0 0 0 0 184 2 0 0 0 28 0 1118 5

0 0 0 9 261 231 65 0 0 209 1910 187 2235
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 41 – Confusion matrix resulting of the classification of the 16-frame blocks extracted by C3D from
the Maryland dataset. The colours indicate the percentage of observations from each class
contained in each table cell.

Table 32 – Grid search for the C parameter of a linear SVM classifier using a k-means quantisation to
combine the descriptors of multiple 16-frame blocks to create representations for videos of
variable length from the Maryland dataset.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.011 0.000
Linear 10 0.011 0.000
Linear 100 0.011 0.000
Linear 1000 0.011 0.000

5.4.3.2.3 Combination by k-means quantisation

When the k-means quantisation was used to combine the descriptors of multiple 16-frame
blocks from the Maryland dataset, the SVM classifier (with parameters defined by a grid search
whose results are shown in Table 32) had difficulties to differentiate between classes and most
observations were predicted as being from the Volcano eruption class. This fact can be seen in
the results presented in Table 33 and illustrated by the confusion matrix in Figure 43. The only
classes that were well represented by this feature space were Chaotic traffic and Waves, which
still presented a overlap with the Smooth traffic and Iceberg collapse, respectively.

120 Chapter 5. Representation generalisation analysis

ic
eb

er
gc

to
rn

ad
o

ff
ir
e

cT
ra

ff
ic

av
al

w
at

er
fa

ll
fo

un
ta

in
sm

Tr
af

fic
w

av
es

vE
rr

up
tio

n
la

nd
sl

id
e

bo
il

w
hi

rl
po

ol

Predicted label

icebergc

tornado

ffire

cTraffic

aval

waterfall

fountain

smTraffic

waves

vErruption

landslide

boil

whirlpool

T
ru

e
 l
a
b
e
l

2 0 0 0 0 1 0 0 2 0 0 0 0

0 5 0 0 0 0 0 0 0 0 0 0 0

0 1 4 0 0 0 0 0 0 0 0 0 0

0 0 0 5 0 0 0 0 0 0 0 0 0

0 0 0 0 5 0 0 0 0 0 0 0 0

0 0 0 0 0 5 0 0 0 0 0 0 0

0 0 0 0 0 1 3 0 0 0 0 0 1

0 0 0 2 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 5 0 0 0 0

1 0 0 0 0 0 0 0 0 4 0 0 0

1 0 0 0 0 0 0 0 0 1 3 0 0

0 0 0 0 1 0 0 0 0 0 0 4 0

0 0 0 0 1 0 0 0 0 0 1 0 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 42 – Confusion matrix of the classification achieved by choosing the majority class from the
predictions made for each 16-frame block extracted by C3D from the videos in the Maryland
dataset.

5.4.3.2.4 Combination by average

As defined earlier, when multiple different parameters achieve the same average result
during the grid search stage, the smallest one of these is the one selected for the experiment,
that is, C = 1 (F1-score – Average: 0.627, Standard deviation: 0.232). By using the average
descriptors to obtain a video-level representation, the second best overall result was achieved
(Table 34). When analysing the results for each class and the confusion matrix illustrated by
Figure 44, it is possible to see that Avalanche was perfectly classified and some other classes
(Boiling water, Chaotic traffic, Tornado, Forest fire and Smooth traffic) achieved either perfect
precision or perfect recall.

Once again, the most common mistake was between Iceberg collapse and Waves. Another
noticeable misclassification that happened when using combination by averaging was between
the Boiling water and Whirlpool classes. Since this confusion did not happen when using
combination by voting, the use of the average representation probably disregarded important
information that made the classifier capable of distinguishing between these classes on the
previous experiment.

5.4. Results 121

Table 33 – Efficiency of SVM classifiers for each class in the test set of the Maryland dataset while using
k-means quantisation to create the video-level representations based on descriptors extracted
from 16-frame blocks by C3D.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Avalanche (Aval) 1.0000 0.4000 0.5714 5
Boiling water (Boil) 0.0000 0.0000 0.0000 5
Chaotic traffic (cTraffic) 0.7143 1.0000 0.8333 5
Forest fire (fFire) 0.0000 0.0000 0.0000 5
Fountain 0.5000 0.2000 0.2857 5
Iceberg collapse (icebergc) 1.0000 0.2000 0.3333 5
Landslide 0.0000 0.0000 0.0000 5
Smooth traffic (smTraffic) 1.0000 0.2000 0.3333 5
Tornado 0.0000 0.0000 0.0000 5
Volcano eruption (vEruption) 0.1163 1.0000 0.2083 5
Waterfall 0.0000 0.0000 0.0000 5
Waves 0.7143 1.0000 0.8333 5
Whirlpool 0.0000 0.0000 0.0000 5
Average / Total 0.3881 0.3077 0.2614 65

Table 34 – Per class performance of C3D features when the average descriptor was used as video-level
representation for videos in the Maryland dataset.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Avalanche (Aval) 1.0000 1.0000 1.0000 5
Boiling water (Boil) 0.7143 1.0000 0.8333 5
Chaotic traffic (cTraffic) 0.8333 1.0000 0.9091 5
Forest fire (fFire) 1.0000 0.8000 0.8889 5
Fountain 0.7500 0.6000 0.6667 5
Iceberg collapse (icebergc) 0.5000 0.4000 0.40000 5
Landslide 0.7500 0.6000 0.6667 5
Smooth traffic (smTraffic) 1.0000 0.6000 0.7500 5
Tornado 0.6250 1.0000 0.7692 5
Volcano eruption (vEruption) 0.8000 0.8000 0.8000 5
Waterfall 0.6667 0.8000 0.7273 5
Waves 0.6667 0.8000 0.7273 5
Whirlpool 0.6667 0.4000 0.5000 5
Average / Total 0.7671 0.7538 0.7448 65

5.4.3.2.5 Combination by statistical measures

The classification results for the Maryland dataset were greatly compromised when
the combination of the 16-frame-block descriptors extracted with C3D was done using the
concatenation of statistical measures. Firstly, the best parameter C for the SVM was selected
using a grid search whose results are presented in Table 35. Then, the resulting classifier was

122 Chapter 5. Representation generalisation analysis

ic
eb

er
gc

to
rn

ad
o

ff
ir
e

cT
ra

ff
ic

av
al

w
at

er
fa

ll
fo

un
ta

in
sm

Tr
af

fic
w

av
es

vE
rr

up
tio

n
la

nd
sl

id
e

bo
il

w
hi

rl
po

ol

Predicted label

icebergc

tornado

ffire

cTraffic

aval

waterfall

fountain

smTraffic

waves

vErruption

landslide

boil

whirlpool

T
ru

e
 l
a
b
e
l

1 0 0 0 0 0 0 0 2 2 0 0 0

0 0 0 0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 0 0 0 5 0 0 0

0 0 0 5 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 3 0 0 0

0 0 0 0 0 0 1 0 0 4 0 0 0

0 0 0 0 0 0 1 0 0 3 0 0 1

0 0 0 2 0 0 0 1 0 2 0 0 0

0 0 0 0 0 0 0 0 5 0 0 0 0

0 0 0 0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 0 0 0 4 0 1 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 43 – Confusion matrix representing the classification predicted by a linear SVM classifier using
descriptors created with k-means quantisation using representations for 16-frame blocks in
the Maryland dataset. The colours indicate the percentage of observations from each class
contained in each table cell.

Table 35 – Grid search results that defined the C parameter of the classifier. Computed by performing
a 5-fold cross-validation in the training set of the Maryland dataset described by C3D and
then combined the concatenation of multiple statistical measures. The chosen parameter is
highlighted.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.150 0.180
Linear 10 0.150 0.180
Linear 100 0.150 0.180
Linear 1000 0.150 0.180

applied to the test set and the performance for each class is reported in Table 36 and in Figure 45
in a confusion matrix. The use of combination by statistical measures caused the classifier to
mistake almost every class as being Smooth traffic and, even so, some Smooth traffic observations
were wrongly classified as being from other classes.

5.4.4 YUPENN Dynamic Scenes

The YUPENN dataset, as the Maryland dataset, is a benchmark for the classification of
dynamic scenes. The greatest difference between these datasets is that YUPENN provides a more

5.4. Results 123

ic
eb

er
gc

to
rn

ad
o

ff
ir
e

cT
ra

ff
ic

av
al

w
at

er
fa

ll
fo

un
ta

in
sm

Tr
af

fic
w

av
es

vE
rr

up
tio

n
la

nd
sl

id
e

bo
il

w
hi

rl
po

ol

Predicted label

icebergc

tornado

ffire

cTraffic

aval

waterfall

fountain

smTraffic

waves

vErruption

landslide

boil

whirlpool

T
ru

e
 l
a
b
e
l

2 0 0 0 0 1 0 0 2 0 0 0 0

0 5 0 0 0 0 0 0 0 0 0 0 0

0 1 4 0 0 0 0 0 0 0 0 0 0

0 0 0 5 0 0 0 0 0 0 0 0 0

0 0 0 0 5 0 0 0 0 0 0 0 0

0 0 0 0 0 4 1 0 0 0 0 0 0

0 0 0 0 0 0 3 0 0 0 1 0 1

0 1 0 1 0 0 0 3 0 0 0 0 0

0 1 0 0 0 0 0 0 4 0 0 0 0

1 0 0 0 0 0 0 0 0 4 0 0 0

1 0 0 0 0 0 0 0 0 1 3 0 0

0 0 0 0 0 0 0 0 0 0 0 5 0

0 0 0 0 0 1 0 0 0 0 0 2 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 44 – Confusion matrix obtained by classifying the test set of the Maryland dataset using when
using averaging to combine the 16-frame blocks descriptors extracted by C3D. The colours
indicate the percentage of observations from each class contained in each table cell.

controlled setting, without camera motion. Under these circumstances, most of the representations
analysed in this experiment achieved good performances, whereas the best performing descriptor
was created by combining the 16-frame-blocks extracted with C3D using voting. This method
was closely followed by the classification of each 16-frame-block individually and by combining
these descriptors using the average. Overall results from this experiment are shown in Table 37.

Once again, IDT-FV feature vectors performed worst than the ones extracted by C3D. We
believe this is due to IDT-FV method being designed for a different task, though its performance
might be improved by using a different local descriptor (in this, we use MBH) or a concatenation
of multiple local descriptors.

When comparing the efficiency of C3D based descriptors, it is noticeable that this method
was capable of creating a good feature space which provided high intra-class separability. This
quality was drastically reduced when the combination of the 16-frame-block descriptors was
done using statistical measures, which might have happened because the used measures created
a less linearly separable feature space. Combination by k-means quantisation also hindered the
classifier’s ability to differentiate between classes, especially when compared to 16-frame-blocks
individual classification. Combination by averaging and by voting achieved performance similar
to when no combination was used. This performance might be further improved by fine-tuning
the pre-trained network on the new dataset or by creating a new network and training it directly

124 Chapter 5. Representation generalisation analysis

Table 36 – Per class performance of C3D representations in the Maryland dataset, combined by concate-
nating multiple statistical measures (average, standard deviation, kurtosis, skewness, maximum
and minimum) and classified with a linear SVM.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Avalanche (Aval) 0.4000 0.4000 0.4000 5
Boiling water (Boil) 0.5000 0.2000 0.2857 5
Chaotic traffic (cTraffic) 1.0000 0.2000 0.3333 5
Forest fire (fFire) 0.0000 0.0000 0.0000 5
Fountain 0.0000 0.0000 0.0000 5
Iceberg collapse (icebergc) 0.1667 0.2000 0.1818 5
Landslide 0.0000 0.0000 0.0000 5
Smooth traffic (smTraffic) 0.0455 0.2000 0.0741 5
Tornado 0.2500 0.2000 0.2222 5
Volcano eruption (vEruption) 0.1429 0.2000 0.1667 5
Waterfall 0.0000 0.0000 0.0000 5
Waves 0.0000 0.0000 0.0000 5
Whirlpool 0.1000 0.2000 0.1333 5
Average / Total 0.2004 0.1385 0.1382 65

Table 37 – Overall results on the YUPENN dataset.

IDT-FV
C3D

(Blocks)
C3D

(Voting)

C3D
(k-Means

quantisation)

C3D
(Average)

C3D
(Statistical
Moments)

Weighted
F1-score 0.8377 0.9596 0.9615 0.8891 0.9571 0.6174

with this dataset (if enough data is available).

5.4.4.1 IDT-FV

The results of the grid search performed to define the value of the penalty factor C

using the features extracted by IDT-FV from videos in the YUPENN dataset are shown in
Table 38. Results on the test set are presented in Table 39 and in the confusion matrix (Figure 46)
and indicate that the SVM classifier had a tendency of misclassifying observations as being
from the Sky clouds class. It is also notable that the classifier had difficulty to correctly classify
observations from the Waterfall class, which were broadly confused with being from the Fountain

class. This indicates that these classes were not well described by the feature space or that the
descriptor was not able to make these classes linearly separable from each other.

5.4. Results 125

ic
eb

er
gc

to
rn

ad
o

ff
ir
e

cT
ra

ff
ic

av
al

w
at

er
fa

ll
fo

un
ta

in
sm

Tr
af

fic
w

av
es

vE
rr

up
tio

n
la

nd
sl

id
e

bo
il

w
hi

rl
po

ol

Predicted label

icebergc

tornado

ffire

cTraffic

aval

waterfall

fountain

smTraffic

waves

vErruption

landslide

boil

whirlpool

T
ru

e
 l
a
b
e
l

1 0 0 0 0 0 0 3 0 0 0 1 0

0 1 0 0 0 0 0 1 0 2 0 0 1

0 0 0 0 0 0 0 2 0 2 0 0 1

2 0 0 1 0 0 0 0 1 1 0 0 0

0 0 2 0 2 0 0 1 0 0 0 0 0

1 0 1 0 0 0 0 3 0 0 0 0 0

0 0 1 0 0 0 0 2 0 0 1 0 1

0 1 0 0 2 0 0 1 1 0 0 0 0

0 2 0 0 0 0 0 1 0 0 0 0 2

1 0 0 0 0 0 0 2 0 1 0 0 1

0 0 0 0 1 0 0 2 0 0 0 0 2

0 0 0 0 0 0 0 3 0 0 0 1 1

1 0 0 0 0 0 0 1 1 1 0 0 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 45 – Confusion matrix that resulted from the classification made using a linear SVM on the videos
from the Maryland dataset. This videos were described by representations extracted using
C3D and combined by the concatenation of multiple statistical measures.

Table 38 – Grid search results for the IDT-FV representations on the YUPENN dataset. The highlighted
parameter was the one selected to be used during the rest of this experiment.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.486 0.105
Linear 10 0.772 0.080
Linear 100 0.757 0.050
Linear 1000 0.757 0.050

5.4.4.2 C3D

5.4.4.2.1 Classification of 16-frame blocks

Parameters used to train the SVM classifier were defined using a grid search, whose
results are shown in Table 40. This classifier’s results achieved on the test set are presented in
Table 41 and in the confusion matrix (Figure 47). They indicate that the feature space provided a
good separability between all classes. Fountain, Waterfall and Lightning storm were the most
misclassified classes in this experiment. These results show that slight overlaps between these
and other classes occur in the feature space, which may be reduced by introducing information
from the dataset into the network by fine-tuning.

126 Chapter 5. Representation generalisation analysis

Table 39 – Per class performance of SVM classifiers on the IDT-FV features on the test set of the
YUPENN dataset.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Beach 1.0000 0.8667 0.9286 15
Elevator 1.0000 1.0000 1.0000 15
Forest fire (ffire) 0.7692 0.6667 0.7143 15
Fountain 0.7000 0.9333 0.8000 15
Highway 0.7500 1.0000 0.8571 15
Lightning storm (lstorm) 0.9286 0.8667 0.8966 15
Ocean 1.0000 0.9333 0.9655 15
Railway 1.0000 0.8667 0.9286 15
Rushing river (rriver) 0.7500 1.0000 0.8571 15
Sky clouds (sclouds) 0.5500 0.7333 0.6286 15
Snowing 0.7059 0.8000 0.7500 15
Street 1.0000 0.6667 0.8000 15
Waterfall 1.0000 0.4667 0.6364 15
Windmill farm (wmfarm) 1.0000 0.9333 0.9655 15
Average / Total 0.8681 0.8381 0.8377 210

Table 40 – Average and standard deviation of the F1-score obtained during the grid search computed using
each 16-frame blocks representation extracted by C3D for videos in the YUPENN dataset.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.954 0.023
Linear 10 0.954 0.023
Linear 100 0.954 0.023
Linear 1000 0.954 0.023

5.4.4.2.2 Combination by voting

When using a voting scheme to combine the descriptors of multiple 16-frame-blocks as
extracted by the C3D method, the SVM classifier presented the same performance (F1-score
– Average: 0.954, Standard deviation: 0.023) for all tested parameters, which lead to selecting
the smallest parameter (C = 1) in the grid search. The resulting classifier performed well when
applied to a never before seen test set, achieving perfect prediction of multiple classes (7 out of 15
classes were perfectly classified). Most of the mistakes made by the classifier are understandable,
since they were made between clearly related classes, such as Fountain and Waterfall or Sky

clouds and Lightning storm. These results can be seen in Table 42 and in Figure 48.

5.4. Results 127

ra
ilw

ay
fo

un
ta

in
el

ev
at

or
oc

ea
n

st
re

et
be

ac
h

ff
ir
e

ls
to

rm
w

m
fa

rm
sc

lo
ud

s
sn

ow
in

g
w

at
er

fa
ll

hi
gh

w
ay

rr
iv

er

Predicted label

railway

fountain

elevator

ocean

street

beach

ffire

lstorm

wmfarm

sclouds

snowing

waterfall

highway

rriver

T
ru

e
 l
a
b
e
l

13 0 0 0 0 0 0 0 0 2 0 0 0 0

0 14 0 0 0 0 0 0 0 0 1 0 0 0

0 0 15 0 0 0 0 0 0 0 0 0 0 0

0 0 0 14 0 0 0 0 0 0 1 0 0 0

0 0 0 0 10 0 0 0 0 2 0 0 3 0

0 0 0 0 0 13 0 0 0 1 0 0 0 1

0 0 0 0 0 0 10 1 0 3 1 0 0 0

0 0 0 0 0 0 2 13 0 0 0 0 0 0

0 0 0 0 0 0 0 0 14 1 0 0 0 0

0 0 0 0 0 0 0 0 0 11 0 0 1 3

0 2 0 0 0 0 1 0 0 0 12 0 0 0

0 4 0 0 0 0 0 0 0 0 2 7 1 1

0 0 0 0 0 0 0 0 0 0 0 0 15 0

0 0 0 0 0 0 0 0 0 0 0 0 0 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 46 – Confusion matrix obtained by classifying IDT-FV representations extracted from the test set
of the YUPENN dataset using a linear SVM. Colours show how many observations from
each class are contained in each matrix cell.

5.4.4.2.3 Combination by k-means quantisation

Table 43 shows the results obtained during the grid search to define the parameter C

of the linear SVM. Since multiple hyper-parameter resulted in the same average F1-score, the
smallest value between them is the one selected to be used during the experiment. Results on
test set can be seen in Table 44, as well as in Figure 49. These results show that combining the
descriptors (extracted by C3D) for all 16-frame-blocks in a video from the YUPENN dataset
using k-means quantisation caused the linear classifier to misclassify observations from the
Fountain class with multiple other classes. This is probably due to an increased overlap between
these classes when compared to the classification of each 16-frame-block individually. The
performance for other classes was also hindered (in a less impactful way) when this combination
method was used.

5.4.4.2.4 Combination by average

Grid search results are shown in Table 45, the highlighted hyper-parameter was used
to train a classifier that was used to predict the class of observations in the test set. The per-
class evaluation measures on this test set can be seen in Table 46 and on the confusion matrix
in Figure 50. This setting achieved the best results (that did not depend on classifying each
16-frame-block) on the YUPENN dataset. Most mistakes were made by wrongly classifying

128 Chapter 5. Representation generalisation analysis

Table 41 – Performance evaluation of SVM classifiers for each class in the YUPENN dataset when
classifying each 16-frame block individually (C3D representations).

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Beach 0.9950 0.9741 0.9866 2084
Elevator 1.0000 1.0000 1.0000 2063
Forest fire (ffire) 1.0000 0.8396 0.9128 1340
Fountain 0.8909 0.8667 0.8786 1988
Highway 1.0000 0.9641 0.9817 1975
Lightning storm (lstorm) 0.9034 0.8866 0.8949 1729
Ocean 0.9897 1.0000 0.9948 2025
Railway 0.9886 1.0000 0.9943 1906
Rushing river (rriver) 0.9361 1.0000 0.967 1977
Sky clouds (sclouds) 0.9252 0.9956 0.9591 2025
Snowing 0.9284 0.9977 0.9618 2182
Street 1.0000 0.9926 0.9963 2040
Waterfall 0.8924 0.8681 0.8801 2025
Windmill farm (wmfarm) 1.0000 1.0000 1.0000 2075
Average / Total 0.9606 0.96 0.9596 27434

samples as Fountain and Waterfall, which indicate that these classes have a less defined boundary
in this feature space. The feature space might be improved by including information about the
new dataset in the network by fine-tuning it to this dataset.

5.4.4.2.5 Combination by statistical measures

In this experiment, representations were obtained for each 16-frame-blocks in a video
using C3D and combined by concatenating multiple statistical measures computed using all
blocks in each video from the YUPENN dataset. Table 47 shows the results from the grid
search performed to define the penalty parameter C of the SVM. This SVM was then trained
on the entire training set and used to classify a set of unseen observations. The results from
this classification are shown as a per-class evaluation in Table 48 and as a confusion matrix
displayed in Figure 51. By analysing these results, it is clear that combination using statistical
measures hindered the ability of the SVM classifier to predict the class of each of observation.
It caused most observations to be predicted as being from the classes Forest fire and Fountain.
Also, Snowing observations were completely misclassified.

5.5 Concluding remarks

In this chapter, we presented experiments that give a better understanding of the capa-
bilities of current state-of-the-art hand-crafted feature extraction and representation learning
methods. In this experiments two techniques were used to extract features from four video dataset,

5.5. Concluding remarks 129

ra
ilw

ay
fo

un
ta

in
el

ev
at

or
oc

ea
n

st
re

et
be

ac
h

ff
ir
e

ls
to

rm
w

m
fa

rm
sc

lo
ud

s
sn

ow
in

g
w

at
er

fa
ll

hi
gh

w
ay

rr
iv

er

Predicted label

railway

fountain

elevator

ocean

street

beach

ffire

lstorm

wmfarm

sclouds

snowing

waterfall

highway

rriver

T
ru

e
 l
a
b
e
l

1906 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1723 0 0 0 1 0 25 0 0 104 135 0 0

0 0 2063 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2025 0 0 0 0 0 0 0 0 0 0

15 0 0 0 2025 0 0 0 0 0 0 0 0 0

0 0 0 21 0 2030 0 33 0 0 0 0 0 0

0 60 0 0 0 0 1125 101 0 54 0 0 0 0

0 10 0 0 0 0 0 1533 0 109 0 77 0 0

0 0 0 0 0 0 0 0 2075 0 0 0 0 0

0 9 0 0 0 0 0 0 0 2016 0 0 0 0

0 0 0 0 0 0 0 5 0 0 2177 0 0 0

0 132 0 0 0 0 0 0 0 0 0 1758 0 135

7 0 0 0 0 0 0 0 0 0 64 0 1904 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1977
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 47 – Confusion matrix of the classification of 16-frame blocks from videos in the YUPENN dataset.
The number of observations indicates the number of blocks extracted from each class. Colours
show the percentage of observations from each class (rows – true label) that were predicted to
be from each class (columns – predicted label).

two focused on action recognition and two on dynamic scenes recognition. These features were
then used for classification using a linear SVM. Based on the results achieved in the proposed
classification tasks it was possible to analyse the complexity of the feature space created by each
of the methods, by looking at the separability of each class in different tasks and settings, and to
assess the generalisation capacity of each feature extraction method tested.

For experiments with IDT-FV, the local descriptor selected was the MBH. This choice
was made due to MBH’s robustness to camera motion and the fact that it produces good
descriptors based on each trajectory (WANG et al., 2013). Even so, it is possible that other local
feature extraction methods would provide better descriptors. It is important to highlight that
the definition of what method will be used to describe the region surrounding each trajectory is
crucial to the performance of the IDT-FV technique. This is not a simple choice and thorough
knowledge of the dataset/task is required to select a suitable method.

When using IDT, it is mandatory to use a quantisation technique due to the large size
of the extracted representations and because their size varies depending on the length of the
video and number of trajectories detected. Fisher Vector (FV) was selected for these experiments
because they were shown to achieve better results when used with a linear classifier (ONEATA;
VERBEEK; SCHMID, 2013). To compute FVs, two parameters need to be defined: the number
of components selected with PCA and the number of words created using GMM. Both these

130 Chapter 5. Representation generalisation analysis

Table 42 – Per class results of the classification of test videos from the YUPENN dataset described by
C3D and combined using voting.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Beach 1.0000 1.0000 1.0000 15
Elevator 1.0000 1.0000 1.0000 15
Forest fire (ffire) 1.0000 0.8667 0.9286 15
Fountain 0.8667 0.8667 0.8667 15
Highway 1.0000 1.0000 1.0000 15
Lightning storm (lstorm) 0.9286 0.8667 0.8966 15
Ocean 1.0000 1.0000 1.0000 15
Railway 1.0000 1.0000 1.0000 15
Rushing river (rriver) 0.9375 1.0000 0.9677 15
Sky clouds (sclouds) 0.9375 1.0000 0.9677 15
Snowing 0.9375 1.0000 0.9677 15
Street 1.0000 1.0000 1.0000 15
Waterfall 0.8667 0.8667 0.8667 15
Windmill farm (wmfarm) 1.0000 1.0000 1.0000 15
Average / Total 0.9625 0.9619 0.9615 210

Table 43 – Results for the grid search on the YUPENN dataset. The representation for each video was
obtained using k-means quantisation combination on 16-frame blocks descriptors extracted by
C3D.

Kernel C
F1-score
(Average)

F1 score
(Standard deviation)

Linear 1 0.017 0.029
Linear 10 0.031 0.035
Linear 100 0.031 0.035
Linear 1000 0.031 0.035

parameters were chosen according to the values used in the original IDT-FV paper (ONEATA;
VERBEEK; SCHMID, 2013): 64 components and 1000 words.

Regarding C3D, the definition of the network architecture and its parameters, such as
learning rate and pooling region, was avoided by using a pre-trained network. This decision
was made because finding a network architecture (and its hyper-parameters) that is suitable
for each dataset, and training this network is very time expensive and requires special care
to avoid overfitting on the training set, especially on small datasets such as KTH-Actions,
Maryland and YUPENN. Also, by using a pre-trained network, it was possible to evaluate the
generalisation ability of the learnt features to different datasets and tasks. When defining the
network architecture, the size of the input also needs to be defined, which will directly influence
the resolution and length of the blocks of each video that will be analysed by the network. The
pre-trained network selected for the experiments works with groups of 16 consecutive frames at

5.5. Concluding remarks 131

ra
ilw

ay
fo

un
ta

in
el

ev
at

or
oc

ea
n

st
re

et
be

ac
h

ff
ir
e

ls
to

rm
w

m
fa

rm
sc

lo
ud

s
sn

ow
in

g
w

at
er

fa
ll

hi
gh

w
ay

rr
iv

er

Predicted label

railway

fountain

elevator

ocean

street

beach

ffire

lstorm

wmfarm

sclouds

snowing

waterfall

highway

rriver

T
ru

e
 l
a
b
e
l

15 0 0 0 0 0 0 0 0 0 0 0 0 0

0 13 0 0 0 0 0 0 0 0 1 1 0 0

0 0 15 0 0 0 0 0 0 0 0 0 0 0

0 0 0 15 0 0 0 0 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0 0 0 0 0

0 0 0 0 0 15 0 0 0 0 0 0 0 0

0 1 0 0 0 0 13 1 0 0 0 0 0 0

0 0 0 0 0 0 0 13 0 1 0 1 0 0

0 0 0 0 0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 0 0 0 0 15 0 0 0 0

0 0 0 0 0 0 0 0 0 0 15 0 0 0

0 1 0 0 0 0 0 0 0 0 0 13 0 1

0 0 0 0 0 0 0 0 0 0 0 0 15 0

0 0 0 0 0 0 0 0 0 0 0 0 0 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 48 – Resulting confusion matrix of dynamic scene classification on the YUPENN dataset with
C3D representations combined by a voting scheme to achieve a video-level prediction.

a resolution of 128×171 pixels.

With a pre-trained model, it is then necessary to define which layer activation will be
used as feature vectors. This is most commonly done by choosing fully connected layers. In
this experiment, the activation of all fully connected layers in the network was concatenated
to achieve a block-level representation. To describe videos with variable length it is necessary
to use a method that combines the representations of all blocks in a video. We explored a few
simple combination methods during the experiments presented in this chapter.

When analysing the results for both action recognition datasets (KTH-Actions and
Hollywood2 Actions), hand-crafted descriptors performed significantly better than the ones
extracted with a representation learning method (C3D). This is probably due to task-specific
information used during the design of the hand-crafted features. For KTH-Actions, different
mistakes were committed depending on the method used to extract the descriptors, which
indicates that each method was capable of capturing different information from the videos and
that the performance may be improved if the methods are combined in an ensemble or adapted
to include more information. This can be done by using different local descriptors with IDT-FV
or by fine-tuning the C3D network with this specific dataset. With Hollywood2 Actions, the
results were quite similar, though the classification of each 16-frame block and the combination
by voting were not used because actions are not performed during the entire duration of each
video. This also caused the descriptors extracted by C3D to contain a lot of irrelevant information

132 Chapter 5. Representation generalisation analysis

Table 44 – Performance of linear SVMs on the YUPENN dataset described using k-means quantisation of
the 16-frame block descriptors extracted by C3D.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Beach 1.0000 0.9333 0.9655 15
Elevator 1.0000 1.0000 1.0000 15
Forest fire (ffire) 1.0000 0.8000 0.8889 15
Fountain 1.0000 0.4000 0.5714 15
Highway 1.0000 0.9333 0.9655 15
Lightning storm (lstorm) 0.5417 0.8667 0.6667 15
Ocean 0.9333 0.9333 0.9333 15
Railway 1.0000 0.8667 0.8286 15
Rushing river (rriver) 0.9375 1.0000 0.9677 15
Sky clouds (sclouds) 0.8333 1.0000 0.9091 15
Snowing 0.9286 0.8667 0.8966 15
Street 0.7500 1.0000 0.8571 15
Waterfall 0.9286 0.8667 0.8966 15
Windmill farm (wmfarm) 1.0000 1.0000 1.0000 15
Average / Total 0.9181 0.8905 0.8891 210

Table 45 – Grid search for the C parameter of the SVM when describing the videos from the YUPENN
dataset using C3D representations combined by averaging.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.935 0.091
Linear 10 0.935 0.091
Linear 100 0.935 0.091
Linear 1000 0.935 0.091

which hindered the performance of the classifier.

On the other hand, the representation learning method performed considerably better
than hand-crafted features when used for dynamic scene recognition. It is important to notice
that, in this case, neither methods were trained or designed for this task. The experiments in
the Maryland dataset showed that using different combination methods to create video-level
representations based on representations extracted from 16-frame-blocks with the C3D method
may heavily influence the final classification results. Again, the mistakes made varied with the
feature extraction method, indicating that different information was encoded by each method.
The same can be seen when using the YUPENN dataset to evaluate the efficiency of the extracted
feature vectors for dynamic scene recognition.

By analysing the results of all the combinations used with the C3D method over all
datasets, the following conclusions were made:

5.5. Concluding remarks 133

ra
ilw

ay
fo

un
ta

in
el

ev
at

or
oc

ea
n

st
re

et
be

ac
h

ff
ir
e

ls
to

rm
w

m
fa

rm
sc

lo
ud

s
sn

ow
in

g
w

at
er

fa
ll

hi
gh

w
ay

rr
iv

er

Predicted label

railway

fountain

elevator

ocean

street

beach

ffire

lstorm

wmfarm

sclouds

snowing

waterfall

highway

rriver

T
ru

e
 l
a
b
e
l

13 0 0 0 0 0 0 2 0 0 0 0 0 0

0 6 0 0 2 0 0 3 0 2 1 1 0 0

0 0 15 0 0 0 0 0 0 0 0 0 0 0

0 0 0 14 1 0 0 0 0 0 0 0 0 0

0 0 0 0 15 0 0 0 0 0 0 0 0 0

0 0 0 1 0 14 0 0 0 0 0 0 0 0

0 0 0 0 0 0 12 3 0 0 0 0 0 0

0 0 0 0 1 0 0 13 0 1 0 0 0 0

0 0 0 0 0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 0 0 0 0 15 0 0 0 0

0 0 0 0 0 0 0 2 0 0 13 0 0 0

0 0 0 0 0 0 0 1 0 0 0 13 0 1

0 0 0 0 1 0 0 0 0 0 0 0 14 0

0 0 0 0 0 0 0 0 0 0 0 0 0 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 49 – Confusion matrix created based on the results of the classification of descriptors extracted
by C3D and combined by k-means quantisation to obtain video-level descriptors for the
YUPENN dataset.

∙ Classification of 16-frame-blocks: used to evaluate the descriptors extracted by the C3D
method directly, without the influence of any combination methods. Although it would
be the best way to use the representations (since no modifications are made in the feature
space), it requires precise time stamps of when the event of interest will occur in the video
or the assumption that it occurs during the entire video (assumed during the experiments).
This method consistently achieved one of the best classification results, together with
combination by voting and averaging.

∙ Combination by voting: similar to the classification of each 16-frame-blocks, using a
voting scheme allows a better evaluation of the performance of the descriptors in each
dataset since it enables the comparison of the results with other feature extraction methods.
Again, this method depends on precise time stamps or the assumption that the event occurs
during the entire video.

∙ k-Means quantisation: each 16-frame-block descriptor is associated with a cluster using
the k-means algorithm. Then, a histogram is created to accumulate the number of 16-frame-
blocks in a video that belongs to each cluster creating a histogram. This histogram is used
as a video-level representation. Since videos have different numbers of 16-frame-blocks,
the histogram is normalized so that it contains the percentage of 16-frame-blocks from
the video in each cluster. The efficiency of the descriptors produced by combining the

134 Chapter 5. Representation generalisation analysis

Table 46 – Per class results on the test set of the YUPENN datasets using descriptors extracted using C3D
and combined by averaging the representations of all 16-frame blocks contained in each video.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Beach 1.0000 1.0000 1.0000 15
Elevator 1.0000 1.0000 1.0000 15
Forest fire (ffire) 1.0000 0.8667 0.9286 15
Fountain 0.8125 0.8667 0.8387 15
Highway 1.0000 1.0000 1.0000 15
Lightning storm (lstorm) 0.9286 0.8667 0.8966 15
Ocean 1.0000 1.0000 1.0000 15
Railway 1.0000 1.0000 1.0000 15
Rushing river (rriver) 0.9375 1.0000 0.9677 15
Sky clouds (sclouds) 0.9375 1.0000 0.9677 15
Snowing 0.9375 1.0000 0.9677 15
Street 1.0000 0.9333 0.9655 15
Waterfall 0.8667 0.8667 0.8667 15
Windmill farm (wmfarm) 1.0000 1.0000 1.0000 15
Average / Total 0.9586 0.9571 0.9571 210

Table 47 – Grid search performed in feature vectors obtained by computing and concatenating multiple
statistical measures from representations extracted using C3D from all 16-frame blocks in each
video from the YUPENN dataset.

Kernel C
F1-score
(Average)

F1-score
(Standard deviation)

Linear 1 0.529 0.077
Linear 10 0.529 0.077
Linear 100 0.529 0.077
Linear 1000 0.529 0.077

16-frame-blocks with the k-means quantisation was below the average efficiency of all
tested combination methods. This was probably due to creating a feature space that is not
suitable for a linear classifier.

∙ Combination by average: by combining the 16-frame-blocks’ descriptors using the
average of all blocks in a video, the SVM classifier achieved the second-best results,
close behind the results achieved using combination by voting. Since voting is not always
applicable and averaging is a simple way to create a fixed-size video-level descriptor, this
is a good baseline combination method.

∙ Statistical measures: encouraged by the good performance achieved by combination by
averaging. The combination with statistical measures was an attempt to include more
information by concatenating multiple statistical moments: average, standard deviation,
skewness, kurtosis, minimum and maximum. The inclusion of more information hindered

5.5. Concluding remarks 135

ra
ilw

ay
fo

un
ta

in
el

ev
at

or
oc

ea
n

st
re

et
be

ac
h

ff
ir
e

ls
to

rm
w

m
fa

rm
sc

lo
ud

s
sn

ow
in

g
w

at
er

fa
ll

hi
gh

w
ay

rr
iv

er

Predicted label

railway

fountain

elevator

ocean

street

beach

ffire

lstorm

wmfarm

sclouds

snowing

waterfall

highway

rriver

T
ru

e
 l
a
b
e
l

15 0 0 0 0 0 0 0 0 0 0 0 0 0

0 13 0 0 0 0 0 0 0 0 1 1 0 0

0 0 15 0 0 0 0 0 0 0 0 0 0 0

0 0 0 15 0 0 0 0 0 0 0 0 0 0

0 1 0 0 14 0 0 0 0 0 0 0 0 0

0 0 0 0 0 15 0 0 0 0 0 0 0 0

0 1 0 0 0 0 13 1 0 0 0 0 0 0

0 0 0 0 0 0 0 13 0 1 0 1 0 0

0 0 0 0 0 0 0 0 15 0 0 0 0 0

0 0 0 0 0 0 0 0 0 15 0 0 0 0

0 0 0 0 0 0 0 0 0 0 15 0 0 0

0 1 0 0 0 0 0 0 0 0 0 13 0 1

0 0 0 0 0 0 0 0 0 0 0 0 15 0

0 0 0 0 0 0 0 0 0 0 0 0 0 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 50 – Confusion matrix obtained from the classification of the test set of the YUPENN dataset.
C3D descriptors were used to describe 16-frame blocks from each video and then combined
by averaging all blocks to describe each video.

the performance of the linear SVM, which probably occurred due to non-linearities
embedded into the new feature space.

The main focus of this chapter was to analyse one of our assumptions that representation
learning methods have better generalisation capabilities than the state-of-the-art hand-crafted
feature extraction method. The results show that our assumption is correct, however hand-crafted
features still have better performance for the task it was designed for. Also, the results presented
in this chapter complement the ones presented in the previous chapter regarding the need to
have a better understanding of how the information (both spatial and temporal) is encoded
by a representation learning architecture. The chosen datasets offer real-word baselines with
different settings that allow us to evaluate how generic and which information the representation
learning method was capable of encoding. It is important to notice that the analysis showed that
the information encoded by the representation learning and the hand-crafted feature extraction
methods were complementary, which shows there is room for improvement on both approaches.

136 Chapter 5. Representation generalisation analysis

Table 48 – Performance of the SVM classifier for each class in the YUPENN dataset. Each video was de-
scribed using the concatenation of multiple statistical measures computed on all representations
(C3D) of 16-frame blocks in a video.

Class (Abbreviation) Precision Recall F1-score
Number of

observations

Beach 0.8571 0.8000 0.8276 15
Elevator 1.0000 0.7333 0.8462 15
Forest fire (ffire) 0.2364 0.8667 0.3714 15
Fountain 0.2564 0.6667 0.3704 15
Highway 1.0000 0.5333 0.6957 15
Lightning storm (lstorm) 1.0000 0.6000 0.7500 15
Ocean 1.0000 0.4667 0.6364 15
Railway 0.5556 0.6667 0.6061 15
Rushing river (rriver) 0.8824 1.0000 0.9375 15
Sky clouds (sclouds) 1.0000 0.6000 0.7500 15
Snowing 0.0000 0.0000 0.0000 15
Street 1.0000 0.6000 0.7500 15
Waterfall 0.9091 0.6667 0.7692 15
Windmill farm (wmfarm) 1.0000 0.2000 0.3333 15
Average / Total 0.7641 0.6000 0.6174 210

ra
ilw

ay
fo

un
ta

in
el

ev
at

or
oc

ea
n

st
re

et
be

ac
h

ff
ir
e

ls
to

rm
w

m
fa

rm
sc

lo
ud

s
sn

ow
in

g
w

at
er

fa
ll

hi
gh

w
ay

rr
iv

er

Predicted label

railway

fountain

elevator

ocean

street

beach

ffire

lstorm

wmfarm

sclouds

snowing

waterfall

highway

rriver

T
ru

e
 l
a
b
e
l

10 3 0 0 0 0 2 0 0 0 0 0 0 0

0 10 0 0 0 0 4 0 0 0 0 1 0 0

0 1 11 0 0 0 3 0 0 0 0 0 0 0

0 3 0 7 0 2 3 0 0 0 0 0 0 0

1 3 0 0 9 0 2 0 0 0 0 0 0 0

0 2 0 0 0 12 1 0 0 0 0 0 0 0

1 1 0 0 0 0 13 0 0 0 0 0 0 0

4 2 0 0 0 0 0 9 0 0 0 0 0 0

0 2 0 0 0 0 10 0 3 0 0 0 0 0

0 3 0 0 0 0 3 0 0 9 0 0 0 0

2 4 0 0 0 0 9 0 0 0 0 0 0 0

0 0 0 0 0 0 3 0 0 0 0 10 0 2

0 5 0 0 0 0 2 0 0 0 0 0 8 0

0 0 0 0 0 0 0 0 0 0 0 0 0 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 51 – Results from the classification performed by SVMs, on representations extracted by C3D and
combined using multiple statistical measures, presented as a confusion matrix.

137

CHAPTER

6
GENERATIVE ADVERSARIAL NETWORKS

FOR KNOWLEDGE TRANSFER

6.1 Opening remarks

As shown by the results in Chapter 5, state-of-the-art deep learning methods have shown
promising generalisation capabilities when applying the representations learnt to completely
different datasets and tasks. However, whenever a new dataset or task needs to be handled, it is
usually required to train a new classifier using a labelled sample that contains examples from
every possible class in that task. One way of improving the performance of the final classifier and
reduce the need of large amounts of labelled that is through regularisation, that is, introducing
additional information to prevent overfitting or even to help solve an ill-posed problem. For
example, when solving a classification problem, learning a classifier from a finite training dataset
is an underdetermined problem, since it is necessary to infer a function of any x given only a
small subset of examples x1, x2, . . . , xn.

The simplest form of regularisation adds a regularisation term, also called a regulariser,
R(f) to the loss function. This procedure is shown in Equation 6.1, in which L is an underlying
loss function that describes the cost of predicting f (xi) when the label is yi, and λ is the
regularisation hyper-parameter, which controls the importance of the regularisation term. R(f)

is typically chosen to impose a penalty on the complexity of f .

min
f

n

∑
i=1

L (f (xi),yi)+λR(f) (6.1)

Many machine learning problems can be seen or structured as a set of smaller problems
with similar characteristics. For example, multiple similar problems can be created by subsam-
pling the classes in a problem and creating multiple slightly different classification problems,
each one with a different subset of classes. The same can be done by subsampling the labelled

138 Chapter 6. Generative adversarial networks for knowledge transfer

examples used for training a model, different sets of labelled examples will produce different
models that try to solve the same problem. By creating a set of models that share a similar
objective task, we believe it is possible to find patterns in those models that would help when
training a new model. This could be done as a type of regularisation and which helps when
training new models that consider previously unseen classes or classes with too few labelled
samples, among other applications.

One of the ways to find the patterns on the set of known models is to assume there is
a probability distribution from which these models were drawn. If this probability distribution
is known, the search space that needs to be covered during the training procedure is reduced,
making it easier to find a suitable model and to avoid bad local minima that might exist in the
model space. In this chapter, we used Generative Adversarial Network (GAN) as an estimator
for this probability distribution.

Traditional GANs (Section 2.8) train two neural networks in an adversarial manner,
where one is called generator and tries to map a known probability distribution to the objective
distribution, while the other is called discriminator and tries to differentiate between examples
created by the generator and real examples. As training progresses, the generator should be able
to draw examples from distributions that are increasingly more similar to the real samples and
the discriminator should become a better estimator of the objective probability density function.

By using GANs to model the probability distribution of the set of known models, many
different possibilities arise. The first and most explored during our experiments is the use of the
discriminator as a regulariser to guide the training procedure of new models for similar problems.
This was done in multiple different ways, varying according to the GAN model used. The use of
the discriminator as a regulariser is further explained in Section 6.2. Another possibility is the
use of the generator to sample examples that are used as an initial condition for the new classifier,
aiming to reduce the training time and avoiding certain local minima. This idea is also explored
in Section 6.2.

We believe that using the GAN regularisation method to guide the training procedure
helps machine learning methods overcome the lack of labelled samples and increase the training
speed by performing knowledge transfer from the known models used to train the GAN to the
new model. Also, many machine learning methods are susceptible to their initial condition. That
is, if a better initial condition is found by sampling from the probability distribution learnt by
the GAN, it is likely that the network will be able to reach a good result in a smaller number of
training epochs or even achieve a better final condition. Since the neural network’s hidden layers
are often used as a way to extract representations from raw data, these approaches are directly
applicable to improve representation learning.

6.2. Experimental setup 139

6.2 Experimental setup
The main idea explored during these experiments was the use of GANs to transfer

knowledge from trained models to new models with similar objectives. We believe this approach
will help new models converge faster, increase their generalisation capability and allow for better
weight initialisation.

Two sets of experiments were conducted. The first set used linear SVM models in a
one-vs-all setting. Multiple models were obtained by using random subsets of observations
to train the classifier and by varying the cost parameter C. The linear SVM model consists in
learning w and b, considering wx+b where the sign of the result indicates the class of x and x is
a feature vector of an input observation. Learnt values of w and b were then used to train a GAN.
This GAN’s discriminator should be able to differentiate between real classifiers and generated
classifiers. We believe the knowledge encoded by the discriminator can be used as a regulariser
when training a new classifier with a similar objective. The generator can also be exploited to
create suitable initialisation weights that would help improve training time and possibly avoid
certain local minima. The pipeline used for this procedure can be seen in Figure 52.

Figure 52 – Methodology pipeline.

The second set of experiments focused on using residual networks models, more specifi-
cally Resnet v1 (HE et al., 2016), and on the CIFAR datasets. The CIFAR-10 dataset was used to
train a Resnet v1 network formed by 20 residual blocks (this network will be called Resnet20v1)

140 Chapter 6. Generative adversarial networks for knowledge transfer

from scratch. All weights from this network were then frozen and the last layer (softmax) was
replaced with a new layer. This new layer was then trained by itself using subsets of classes from
the CIFAR-100 dataset. The classes from the CIFAR-100 dataset were split into training and test
sets and, in this stage, only training classes are used.

The weight matrices learnt by the model for the softmax layer for different subsets of
classes are then used to compose the dataset. Next, a GAN is used to model the probability
distribution of the weight matrices dataset, resulting in the discriminator being able to differentiate
between real and generated samples and a generator capable of creating new weight vectors.
Both these models have the potential to improve the results when training a new classifier. The
discriminator can be used to regularise the learning of the new model by guiding it to the same
probability distribution as the models in the dataset, and the generator by creating weight vectors
used to improve the weight initialisation of the model. A pipeline explaining this procedure is
shown in Figure 53.

Figure 53 – Pipeline used for the second set experiments using the CIFAR datasets.

6.3. Datasets 141

Another version of this dataset was made by replacing not only the softmax layer but
also the entire last residual block, which consists of two convolutional layers and two batch
normalisation layers. In this case, filters from the convolutional layers and their respective biases,
in addition to the weight matrix and biases learnt by the softmax layer, were stored. More details
about the created datasets are given in Section 6.3.

6.3 Datasets

To apply the idea explained in the previous section, we created datasets containing sets
of weight vectors acquired by training multiple models on similar problems. This was done
for different tasks and classification algorithms. Also, a two-dimensional synthetic dataset for
visualisation purposes, allowing the analysis of the behaviour of both the generator and the
discriminator during different stages of training.

Due to the complexity of the problem being investigated and the novelty of the proposed
method, we chose to explore simpler and well-known applications and datasets. To this end, we
decided that a two-dimensional synthetic dataset would provide a well-controlled setting that
allows for easier visualisation and understanding of the method performance. Also, we forgo the
analysis of the effect of this method on spatio-temporal features and focus on spatial features
for the time being. Image datasets provide lower-dimensional problems that have been more
thorough explored, especially in few-shot learning settings. We believe that, once the method is
established for image (spatial) problems, its extension to spatio-temporal problems is straight
forward.

6.3.1 Synthetic dataset

This synthetic dataset was created by training linear SVM classifiers on samples pur-
posely created so that every classifier behaved in a neutral or correlated manner where the
positive class is always positioned in the top-left side of the classifier. Also, every classifier is
centred as to avoid the need for a bias term. The main goal of using this dataset is that it allows
us to visualise and compare the generated and real samples, and analyse how the discriminator
classifies relevant regions in the two-dimensional model space.

Examples of this dataset can be seen in Figure 54, where the background colour indicates
the output of the classifier (red being the region classified as positive and blue classified as
negative). The dots (samples used to train the classifier) on the image are discarded after training
has finished and only the weight vector are saved. In this case, since linear SVM was used,
the weight vector is given by wx+b, where x ∈ R2 is the feature vector for the sample being
classified, w ∈ R2 is the weight vector learnt by the classification algorithm and b is the bias
vector. Since the classifiers are centred, b is always 0 and is disregarded, and only the values of w
are saved. The resulting two-dimensional dataset can be seen represented by the red dots shown

142 Chapter 6. Generative adversarial networks for knowledge transfer

in Figure 55. The blue dots represent a second version of this dataset where random Gaussian
noise was added to the samples of the first version.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 54 – Examples of classifiers used as the training set for the GAN. The set of classifiers used for
training contain only centred linear classifiers which present a positive correlation between
the axis and where the positive class (red) is on the top-left side of the classifier. The samples
used to train the classifiers are discarded and only the linear SVM weight vector is used to
create the dataset.

Figure 55 – Scatter plot showing the behaviour of the synthetic dataset created. The original data is shown
in red, while a second version, disturbed by random Gaussian noise, is shown in blue.

6.3.2 Omniglot

The Omniglot dataset (LAKE; SALAKHUTDINOV; TENENBAUM, 2015) is composed
of images of 1623 different handwritten characters from 50 different alphabets. Each image was
obtained via Amazon’s Mechanical Turk by asking 20 different people to draw each character.
The Omniglot dataset is generally split into a training (background) set containing 30 alphabets
and an evaluation set with the remainder 20 alphabets.

Initially designed for one-shot learning, we adapted the dataset in a way to fit our
requirements so that we were able to train multiple models for similar tasks, in this case, character
recognition. To create the trained models dataset, two different approaches were used: classifying
the images based on pixel values and describing the images using HOG descriptors (DALAL;
TRIGGS, 2005) before classification.

6.3. Datasets 143

Figure 56 – Example images from the Omniglot dataset.

To create the dataset of trained models, we first extracted subsets of ten classes from the
training set and then train models in a one-vs-all setting. Different subsets allow the training of
multiple different models that have the same objective, character recognition. Further variance
was achieved by varying the parameters used to train each model. In this case, linear SVM
models were used. Examples of the classifiers obtained during this process can be visualised in
Figure 57, where linear SVM models were trained on raw pixel images.

Figure 57 – Visualisation of the models obtained when training linear SVM classifiers on the raw pixels
of subsets of classes of the Omniglot dataset.

6.3.3 CIFAR

There are two versions of the CIFAR dataset (KRIZHEVSKY; HINTON, 2009) known
as CIFAR-10 and CIFAR-100. Both datasets are composed of 32× 32 colour images which
are split into disjoint sets of classes, 10 classes in CIFAR-10 and 100 classes in CIFAR-100.
CIFAR-10 contains 60000 images (6000 per class) which are split into training (50000) and test

144 Chapter 6. Generative adversarial networks for knowledge transfer

sets (10000). CIFAR-100 is similar to CIFAR-10, with the exception that the images are split
into 100 classes, each containing 600 images. Again, these images are split into training images
(500 per class) and testing images (100 per class).

To create the dataset of trained models, we start by training a Resnet v1 (HE et al., 2016)
architecture containing 20 residual blocks (Resnet20v1) on the CIFAR-10 dataset. All the weights
learnt by the model are then fixed and the last layer (softmax) is discarded and replaced by a
new layer, which is trained using a subset of classes from the CIFAR-100 dataset. The weight
matrices W ∈ Rd×c and bias vectors b ∈ Rc learnt by the model (where d = 64 is the number
of features passed by the previous network layer to the softmax layer and c = 10 is the number
of classes included in each subset) for each subset of classes are stored, creating the dataset of
classifiers.

A second version of the model dataset was created where instead of training only the
softmax layer on the subset of CIFAR-100, the entire last residual block plus the softmax layer
are used. This leads to collecting the weights for two convolutional layers and a fully connected
layer. In this case, the convolutional filters stored for both convolutional layers are 3×3×64
while their respective bias vectors have 64 dimensions. The softmax weight matrices and bias
vectors have the same sizes as in the previously described dataset.

6.4 Experiments

6.4.1 Understanding GANs

The first experiments aimed at achieving a better understanding of how GANs behaved
during training. This was done by using the two-dimensional synthetic dataset presented in
Section 6.3.1 and visualising the results at the end of each epoch. Examples of these results for
DCGAN are shown in Figure 59. In them, the generated samples from the last 10 epochs can
be seen in green and yellow, green being the oldest samples and yellow the newest, while real
samples are shown in black. The background colours indicate the output of the discriminator,
where red indicates regions classified as real and blue classified as fake. In the bottom graph, the
red line shows the discriminator loss, the blue line shows the generator loss and the green line
shows the log of the Maximum Mean Discrepancy (MMD) (GRETTON et al., 2012), measure
that compares the distribution of the newest generated samples to the distribution of the real
samples, where the distributions are considered to be more similar the lower the value of the
MMD is.

These results were also used to compose videos that can be found online. These videos
show the behaviour of DCGANs using batch normalisation and with the discriminator being fed
batches of mixed samples (real and generated)1 or separate batches for each type2. The same
1 Synthetic dataset - DCGAN - Single-batch: <https://youtu.be/PKUDwgsSgio>
2 Synthetic dataset - DCGAN - Separate batches: <https://youtu.be/aJaKLpgNQbY>

https://youtu.be/PKUDwgsSgio
https://youtu.be/aJaKLpgNQbY

6.4. Experiments 145

experiment was conducted using the noisy version of the synthetic dataset3,4. This analysis was
motivated by conflicting results when using batch normalisation with separate batches for real
and generated samples, as is the most common way to use DCGANs.

Figure 58 – Visualisation created to analyse the behaviour of the GAN during training. These examples
show different stages of training (epochs) when using DCGANs on the synthetic dataset.
Real samples are represented by the red dots. The green and yellow dots show the generated
samples from the last 10 epochs, oldest to newest, respectively. The background colour
indicates the output of the discriminator for each region, where red indicates regions classified
as real and blue as fake. The bottom graph shows the discriminator loss (red), the generator
loss (blue) and the log of the MMD value (green).

Another possible way of visualising the GAN training is by looking at the generated
samples during different stages of training. Since the application is focused on modelling

3 Noisy Synthetic dataset - DCGAN - Single-batch: <https://youtu.be/IH7vSn3f1l0>
4 Noisy Synthetic dataset - DCGAN - Separate batches: <https://youtu.be/oBrmzb62y7I>

https://youtu.be/IH7vSn3f1l0
https://youtu.be/oBrmzb62y7I

146 Chapter 6. Generative adversarial networks for knowledge transfer

classifier distributions, the generated samples will be classifiers, specifically linear classifiers
wx+b with b = 0. Randomly generated samples during different iterations of training can be
seen in Figure 59. It is possible to see that the classifiers become more like the training data as
training progresses.

(a) Iteration 0 (b) Iteration 450

(c) Iteration 3000

Figure 59 – Randomly generated classifiers in different stages of training of a DCGAN on the synthetic
dataset. It is possible to see that the generated classifiers (background colour) become more
similar to the training data as training progresses. The dots are only used to highlight the
changes in the generated samples.

6.4.2 Using GANs for regularisation

After analysing the results obtained by the GAN, we noticed that the output of the
discriminator can be unstable, especially if the GAN training continues after the generator has
converged. Since it is hard to know when to stop the training when dealing with high dimensional
datasets, an alternative to the discriminator output was proposed based on (EGHBAL-ZADEH;

6.4. Experiments 147

WIDMER, 2017), where we compute the Maximum Likelihood Estimate (MLE) of the new
classifier being from the same probability distribution as the known models dataset using the
second-to-last layer output. This is done by fitting a Gaussian distribution to every feature of that
layer’s output. Then, we compute the sum of the chance that every feature extracted from the
new classifier belongs to respective fitted Gaussian.

To test the idea of using GANs to transfer knowledge through regularisation, we first
explore it by creating a new problem that contains a possible solution which can be approximated
by the information contained in the synthetic dataset. This problem is shown on Figure 60,
together with the optimal solution achieved by a linear SVM classifier trained without any kind
of regularisation. Notice that the solution achieved by the linear SVM without regularisation and
using the entire dataset is completely opposite to the models included in the synthetic dataset,
even though a perfect solution is also included in that dataset.

Figure 60 – Training data used to test the GAN regularisation. The dots’ colours indicates their classes,
while the background colour shows the classifier obtained by training a linear SVM without
regularisation.

This problem is addressed in a few-shot setting using 5 samples from each class for
training. Ten classifiers were trained using different subsamples (all of them using the same
DCGAN discriminator for regularisation) and the average and standard deviation of the results
were computed. To analyse the speed of training, we use a model selection process, where we
evaluate the performance of the classifier after every epoch and store the epoch where the best
results were achieved. The results obtained by using the discriminator output for regularisation
can be seen Table 49, and the results for the MLE approach are shown in Table 50. The first two
rows of each table show baselines for this experiment: no regularisation and l2 regularisation.

The results show that using the discriminator output directly as a regulariser did not
influence the final model. We believe this happened due to the instability of the discriminator
output seen during previous experiments. On the other hand, when the MLE approach was used,
the regularisation offered a significant gain for high values of d (λ parameter associated with the
discriminator regulariser). The MLE approach also showed great benefits regarding the number
of epochs required to achieve the best results. The most probable reason for this is that the
GAN regulariser offer more useful information for the model to train on, avoiding overfitting the

148 Chapter 6. Generative adversarial networks for knowledge transfer

Table 49 – Regularisation based on the discriminator output of a DCGAN trained on the synthetic dataset.
The regularisation is performed during training a classifier on small (5) subsample of the
dataset shown in Figure 60. The columns “d” and “l2” show the values of λ used for the
discriminator regulariser and l2 regulariser, respectively. Average and standard deviation were
computed over the results of 10 repetitions using different subsets.

d l2 Test Accuracy First Best Epoch

0 0 49.5000±26.7001 62.2079±38.2427

0 0.01 49.4926±26.6850 62.7723±37.6787

1 0 49.4852±26.7176 61.6634±37.9685

10 0 49.4802±26.7098 60.2079±38.7248

100 0 49.4926±26.7308 63.8218±37.4169

1000 0 49.4777±26.7058 60.3960±38.6108

10000 0 49.4654±26.7233 59.9901±39.0378

Table 50 – Regularisation based on MLE approach using the discriminator of a DCGAN trained on the
synthetic dataset. The regularisation is performed during training a classifier on small (5)
subsample of the dataset shown in Figure 60. The columns “d” and “l2” show the values of λ

used for the discriminator regulariser and l2 regulariser, respectively. Average and standard
deviation were computed over the results of 10 repetitions using different subsets.

d l2 Test Accuracy First Best Epoch

0 0 49.4876±26.7137 61.4158±38.1986

0 0.01 49.4926±26.6842 61.8713±38.321636

1 0 49.6015±26.7838 53.0495±40.001826

10 0 50.8193±26.3080 44.9604±41.284073

100 0 52.4703±26.7162 45.5347±41.5095

1000 0 56.5495±25.4229 33.0099±37.3550

10000 0 59.8267±25.4368 24.3564±31.5110

training data due to the small number of samples available for training.

6.4.3 Regularising Linear SVM for character classification

After experiments with a synthetic dataset, extending them to a real-world problem was
the natural next step. For that, we selected the Omniglot dataset using HOG descriptors and
classifying directly from the raw pixels. Extending the proposed method to this task proved to be
a challenge since the settings that worked for the synthetic dataset did not work for the new task.
HOG descriptors are structured as a concatenation of multiple histograms, which proved to be a
challenge to model using convolutions. It also made it hard to analyse and diagnose the training
procedure for the GAN. It is important to notice that the GAN loss is known for not being a good
indicator of the GAN’s performance.

When using DCGANs, every architecture and hyper-parameter combination tested suf-
fered from mode collapse, which was diagnosed by looking at the generated samples. We then

6.4. Experiments 149

shifted to WGANs, whose generator seemed to produce reasonable results but when discrimina-
tor was used to regularise the learning of a new classifier, both using the discriminator output
and the MLE approach, achieved very poor results, hindering the performance when compared
to unregularised and l2 regularised learning. Many different GAN modifications were studied as
a possible solution to the faced problems, among them were VAEGANs (LARSEN et al., 2015),
VEEGANs (SRIVASTAVA et al., 2017), InfoGANs (CHEN et al., 2016) and BEGANs (BERTH-
ELOT; SCHUMM; METZ, 2017). BEGANs were selected due to being proposed as a way
to avoid mode collapse, their relation to the Wasserstein distance, and the fact that having an
autoencoder as the discriminator creates an intuitive layer (latent embedding layer) to use for the
MLE approach.

The Omniglot dataset using raw pixels and linear SVMs allowed us to visualise the
classifiers generated by the BEGAN. This visualisation can be seen in Figure 61, where the left
image shows the visual appearance of real classifiers while the right image shows classifiers
generated by a BEGAN. It is possible to see similarities between both images, such as visible
white and black patterns with different shades of grey as background. However, the generated
classifiers do show greater blurriness than the real ones.

(a) Real classifiers (b) Generated classifiers

Figure 61 – Comparison between real classifiers and randomly generated classifiers for the Omniglot
dataset using raw pixels and modelled by a BEGAN.

When fitting the Gaussian distributions for features extracted from the central layer of
the discriminator, the distributions’ standard deviation had an order of magnitude of −5. This
makes the Gaussian distributions behave in a similar manner as delta functions, with 0 almost
everywhere. Such behaviour makes the gradients derived from the MLE regularisation equal to 0
most of the time, not helping the training procedure. To fix this problem, different architectures
with different sizes of embedding space and different types of normalisation for the input were
tested but had no impact on the standard deviations.

150 Chapter 6. Generative adversarial networks for knowledge transfer

Since the discriminator of BEGAN is an autoencoder, the output of the discriminator can
not be directly used to regularise learning. Nevertheless, the BEGAN’s discriminator is trained
to minimise the reconstruction error of real examples while maximising the reconstruction error
of fake/generated examples. For that reason, we experimented using the reconstruction error
as the regularisation measure. Table 51 shows results for the Omniglot dataset in a one-vs-all
few-shot learning setting, that is, using 3 examples per class for training, 2 for validation and 15
for testing. This experiment was repeated 50 times using randomly selected classes and training,
validation and test sets, for each combination of λ parameters.

Table 51 – BEGAN regularisation using reconstruction error in a few-shot setting (3 training samples,
2 validation samples and 15 test samples per class) on the Omniglot dataset. Average and
standard deviation over 50 repetitions using different random subsets.

d l2 Test Accuracy First Best Epoch

0.0 0.0 51.0000±2.1344 1.6000±1.2000

0.0 0.01 51.0000±2.1344 1.6000±1.2000

0.01 0.0 51.0000±2.1344 1.6000±1.2000

0.1 0.0 53.0000±5.2599 4.8000±9.4742

1.0 0.0 51.6667±2.6874 2.0000±1.3416

10.0 0.0 58.6667±15.1438 22.4000±28.9938
100.0 0.0 55.0000±13.9244 10.4000±20.2791

The results show considerable accuracy improvement when using d = 10.0, however,
considerably increasing the standard deviation. It also showed an increase in the average number
of epochs required to achieve the best validation accuracy (“First Best Epoch”). We believe this
happens because the number of samples used for training is very small which causes the other
models to quickly overfit the training data, while discriminator regularisation causes the model
to learn during a longer number of epochs.

6.4.4 Regularising residual networks for the CIFAR dataset

Another real-world application used for experiments was the CIFAR dataset, in this case,
modelled by a residual network composed of 20 residual blocks (Resnet20v1). As explained in
Session 6.2, the network is first trained from scratch on the CIFAR-10 dataset, and then only the
last layer is retrained for a subset of classes from the CIFAR-100 dataset. Since we define this as
a 10-way (multi-class) problem, the weight vector is a matrix W ∈ Rd×c, where d is the size of
the feature vector input to the softmax layer and c is the number of classes.

Modelling the entire W matrix proved to be a challenge due to its structure since the
columns can be shuffled and the only impact would be a change in the order of the classes
of the output. The same happens when shuffling rows; if the input order changes the same
way as the order of the matrix rows, there will be no impact on the output. Fully connected
architectures caused the models to mode collapse. This motivated the idea of modelling each

6.4. Experiments 151

column of the matrix separately. By breaking the matrix into columns, it is also possible to use
the discriminator to regularise problems that consider any number of classes, since each column
will be passed to the discriminator separately and the sum of the computed measures will be
used for the regularisation. However, by doing so, the connection between the classifiers learnt is
not considered by the GAN and, thereafter, during regularisation.

To evaluate the performance of the BEGAN and see how training was progressing, we
generated samples (classifiers) and applied them to every image that belonged to the training
classes. From the scores outputted by each classifier, a ranking was created and the top and
bottom 10 ranked images were analysed. This visualisation is shown in Figure 62 where each
row shows the top 10 (left) and bottom 10 (right) ranked images for different randomly generated
classifiers. It is important to notice that these classifiers are generated without any relation to the
others.

Figure 62 – Visualisation of the results of the models generated by a BEGAN trained on the CIFAR
models dataset. Each row shows the results for a different generated classifier. The top 10
images who obtained the highest scores are shown on the left, while the bottom 10 scored
images are shown on the right.

When applied to regularisation, both BEGAN regularisation approaches (reconstruction
error and MLE) showed better results than unregularised and l2 regularised experiments. The
results shown in Table 52 were obtained by using 7 training examples, 3 validation examples
(used to define the first best epoch) and 100 test examples per class and repeated 10 times using
different subsets of classes and splits. The reported results are the average and standard deviation

152 Chapter 6. Generative adversarial networks for knowledge transfer

of: the test accuracy after the last training epoch (100), the epoch where the best validation
accuracy was achieved and the test accuracy for that epoch. These experiments used a fixed
learning rate schedule, with the learning rate starting at 0.001 and being multiplied by 0.1 every
50 epochs three times, then reducing the learning rate again by half after 30 epochs. The training
procedure used a total of 200 epochs.

Table 52 – Results for the experiments using BEGAN regularisation on the last layer (softmax) of a
residual network. Columns “d” and “l2” show the values of the λ parameters for the BEGAN
regularisation and l2 regularisation, respectively. Column “MLE” indicates if the BEGAN
regularisation was done using reconstruction error (False) or the MLE approach (True). Average
and standard deviation was computed over the results of 10 repetitions using different subsets
of classes and splits. Training was conducted using 7 examples, the validation split (used to
define the best epoch) contains 3 examples and test used 100 examples.

d l2 MLE
Test Accuracy
(Epoch 200)

First Best Epoch
Test Accuracy
(Best Epoch)

0 0 – 0.2395±0.0203 125.0±41.6269 0.2430±0.0198

0 0.01 – 0.2236±0.0423 127.6±40.1054 0.2272±0.0431

0.001 0 False 0.2203±0.0397 158.1±38.1404 0.2234±0.0397

0.001 0 True 0.2464±0.0350 109.1±29.1700 0.2504±0.0345
0.01 0 False 0.2181±0.0490 132.2±30.248306 0.2203±0.0492

0.01 0 True 0.2302±0.0404 121.4±29.2684 0.2341±0.0402

0.1 0 False 0.2147±0.05269 137.4±31.4013 0.2184±0.0534

0.1 0 True 0.2345±0.0244 133.4±40.2795 0.2378±0.0228

1 0 False 0.2099±0.0350 141.5±42.1456 0.2127±0.0356

1 0 True 0.2257±0.0388 120.3±33.3588 0.2287±0.0389

10 0 False 0.2274±0.0257 126.4±37.3770 0.2309±0.0255

10 0 True 0.2307±0.0446 141.8±31.5525 0.2345±0.0437

100 0 False 0.3066±0.03675 138.8±31.0670 0.3094±0.0370
100 0 True 0.1918±0.0322 163.7±34.9773 0.1941±0.0336

1000 0 False 0.1051±0.0180 32.6±20.8959 0.2071±0.0240

1000 0 True 0.1049±0.0242 33.1±46.1356 0.1282±0.0278

After analysing these results, we believed that the learning rate schedule and λ parameters
directly influence the final results. To evaluate this, we performed a random search considering:
initial learning rate, decay rate (multiplier used to reduce the initial learning rate) and number of
decay steps (number of equally spaced steps the decay rate is multiplied by the initial learning
rate). The λ parameters, d and l2, were also randomly defined. Each regularisation approach is
tested independently for all the randomly generated learning schedules. For this experiment, 20
different learning rate schedules were used and the top 5 were selected based on the validation
accuracy for each regularisation method.

Figure 63 shows the results for 9 different subsets of classes, where each colour indicates
a different regularisation method, the stronger coloured lines indicate the average accuracy
while the lighter colours show the standard deviation. It is possible to see that most of the
time GAN regularisation achieved a better result, however it was very sensible to the learning

6.4. Experiments 153

rate schedule, which leads to lower average performance. It is also possible to notice that the
GAN regularisation also achieved a higher test accuracy faster than the other methods for most
problems shown.

Figure 63 – Plots showing the average and standard deviation test accuracy per epoch for the CIFAR
Resnet20v1 combination using different regularisation methods and random search to define
learning rate schedules. The top 5 learning rate schedules are selected based on the validation
accuracy and used to compute the plotted metrics for 9 different randomly selected subsets of
test classes (10-way classification).

6.4.5 Initialisation using generated samples

To explore the generator learnt by the GAN, we propose the use of the generated samples
as a way to find a better initialisation for the network parameters. In this experiment we use the
BEGAN training on the CIFAR-Resnet20v1 combination to generate weight matrix columns.
Since there is no way to know which classes the BEGAN is taking into consideration when
generating samples, we combine ten generated columns to create a 10-way classifier and use

154 Chapter 6. Generative adversarial networks for knowledge transfer

the Munkres algorithm (MUNKRES, 1957) to find the order of the columns that maximise the
training accuracy.

We first evaluate the performance of the generated matrices comparing with random
initialisation and generating random matrices that are then reordered by the Munkres algorithm.
The results for GAN generated matrices and random generated matrices are shown in Tables 53
and 54, respectively. These results do not consider any kind of training and are a way to analyse
if the probability distribution learnt by the GAN is useful for the learning procedure.

Table 53 – Initialisation using generated samples (matrix columns) reordered using the Munkres algorithm
to maximise the initial accuracy. When multiple matrices are generated, the one with the best
initial accuracy in the training set is selected. Average and standard deviation computed over
10 repetitions using different subsets of classes.

of
generated
matrices

Initial Training
Accuracy

Initial Validation
Accuracy

Initial Test
Accuracy

1 0.1324±0.0489 0.1353±0.0498 0.1352±0.0541

10 0.1984±0.0301 0.1990±0.0308 0.1965±0.0311

100 0.2309±0.0270 0.2297±0.0296 0.2319±0.0306

1000 0.2545±0.0244 0.2545±0.0275 0.2553±0.0237

Table 54 – Initialisation using randomly generated matrices reordered using the Munkres algorithm to
maximise the initial accuracy. When multiple matrices are generated, the one with the best
initial accuracy in the training set is selected. Average and standard deviation computed over
10 repetitions using different subsets of classes.

of
generated
matrices

Initial Training
Accuracy

Initial Validation
Accuracy

Initial Test
Accuracy

1 0.1121±0.0278 0.1096±0.0246 0.1115±0.0316

10 0.1552±0.0196 0.1558±0.0238 0.1509±0.0203

100 0.1958±0.0145 0.1928±0.0173 0.1920±0.0176

1000 0.2295±0.0169 0.2257±0.0175 0.2292±0.0193

To analyse the impact of the GAN initialisation on the training results we used a random
search to define the learning rate schedule and plotted the test accuracy for each training epoch
considering the top 5 best learning schedules based on the validation accuracy. Average and
standard deviation for different numbers of generated matrices and a baseline using random
initialisation can be seen in Figure 64. Results show that even though the GAN generated
matrices did provide a better initial condition for the classifier, it did not have a considerable
impact on the performance during later epochs.

6.5. Concluding remarks 155

Figure 64 – Average and standard deviation of test accuracy over epochs for nine different subsets of test
classes. Learning rate schedules are subjected to random search and the best 5 are selected
based on the validation accuracy. Different colours indicate different numbers of initialisation
matrices generated by the GAN. The Munkres algorithm is used to find the column order that
maximises the training accuracy. When more than one matrix is generated, the one with the
best training accuracy is used.

6.5 Concluding remarks

The results achieved in the experiments presented in this chapter show that GANs have a
promising application when it comes to knowledge transfer. However, their training instability is
still a major challenge that needs to be addressed. We analysed two ways of exploiting GAN
models for knowledge transfer: regularisation and weight initialisation. The major challenges
encountered during the experiments include: assessing model quality, mode collapse and over-
training.

During our experiments, we used different procedures to analyse the results obtained
by trained GAN models so that mode collapse and over-training could be detected and the

156 Chapter 6. Generative adversarial networks for knowledge transfer

overall quality of the trained model could be inferred. Even though mode collapse is one of the
most commonly tackled problems by new GAN training procedures, these are only explored
for images, where it is easier to identify when a mode collapse happens. Over-training a GAN
is not a widely explored problem since its impact is mostly seen in the discriminator and most
GAN applications focus only on utilising the samples created by the generator. We noticed
that over-training the GAN causes the discriminator to be trained on irrelevant information and
hindering the quality of the discriminator.

Even though the results are promising, further analysis is required to make the approach
more stable and easily applicable to real-world problems. Moreover, we believe that expanding
the regularisation to previous layers, as well as the softmax layer, will further improve the
impact of the GAN regularisation in the final model and that it will improve, not only the final
classification results, but also the representations learnt by the network.

The method and experiments presented in this chapter go towards improving the quality
of the representations learnt by representation learning algorithms by using a data-driven regular-
isation method. This method can also be used to overcome when the amount of data available is
not enough to train a representation learning method. The proposed regularisation method could
also be used on top of a pre-trained network for fine-tuning. It is important to notice that we
chose to explore the proposed method on a synthetic and image datasets due to the complexity
of evaluating the impact of the model in the final classifier, which was overcome by addressing
simpler and more well-known problems. As future work, we intend to explore different GAN
architectures for better training stability and easier model quality inference; and to analyse the
impact of the proposed method on spatio-temporal representation learning.

157

CHAPTER

7
CONCLUSION

Machine learning methods heavily rely on good data descriptors to create high-quality
models. However, the development of good representation extraction techniques is considered to
be a complex problem that requires careful engineering and domain-specific knowledge. More-
over, most existing feature extraction techniques are task-specific, with out-of-the-box integrated
domain-specific knowledge. This fact hinders the performance of most of these techniques or
even makes them not suitable for different tasks. Representation learning tries to solve this
problem by proposing data-driven methods that automatically generate representations that are
relevant to a given task. This allows end-to-end machine learning methods to be developed,
where the model’s input is raw data and its output is the desired output for the given task (e.g.
classification score). Furthermore, these techniques take advantage of high amounts of data
available to generate better models.

In this document, we explored and analysed multiple representation learning and feature
extraction methods developed for videos. The main challenges faced when learning representa-
tions from video are: (1) to learn representations that include both spatial and temporal informa-
tion; (2) to extract fixed-size representations from variable-length (time) and variable-dimension
(space) videos; (3) to learn long-term temporal information with reasonable computational cost;
(4) to extract representations capable of generalising to different settings, such as changes in
velocity and focus changes from local to global information and vice-versa. These difficulties
are highlighted in the results presented throughout this document.

In Chapter 4, we proposed a novel spatio-temporal representation learning evaluation
pipeline for video processing methods. This pipeline involves analysing the representations
created for three versions of the BouncingMNIST dataset and evaluating how the models trained
with each version extrapolates their knowledge to the remaining versions. Using this pipeline,
we evaluated several state-of-the-art deep learning architectures, for which we showed that
representations learnt by using spatial and temporal information on every step of the network are
better than the ones learnt by processing spatial and temporal information separately. However,

158 Chapter 7. Conclusion

the methods currently used to do so have difficulty generalising the encoded knowledge when
there are changes to the available information, especially temporal.

In Chapter 5, we compared the generalisation capabilities of one of the most commonly
used deep learning architectures (C3D) to the state-of-the-art hand-crafted spatio-temporal
feature extraction method (IDT-FV) for two different tasks (action recognition and dynamic
scene recognition). The results show that, as expected, hand-crafted feature extraction methods
perform better at the task they were designed for, probably due to domain-specific knowledge
included in the method. However, the representation learning method used was able to generalise
significantly better to a task was unknown for both methods. We also explored different ways of
combining features extracted from short video clips into a fixed-size video-level representation.

Finally, in Chapter 6, we present a new data-driven regularisation and model initialisation
approach based on GANs. This approach takes advantage of trained models for similar problems
to improve the representations and overall quality of a new model. A GAN is trained to model the
distribution of trained models; the discriminator is then used as a regulariser that guides the new
model into the probability distribution, while the generator is used to create better initialisation
parameters for the network. The presented results are promising and show that GANs can be
used for knowledge transfer both for a synthetic task and for image classification. However, some
challenges need to be overcome when training the GAN model, such as training instability, mode
collapse and model quality assessment. Also, further investigation is required to understand the
impact of this method on spatio-temporal representation learning; this is investigation is made
particularly difficult by the challenges mentioned above.

Overall, we noticed that spatio-temporal representation learning from videos is still an
open research area, regardless of end-to-end deep networks being responsible for some of the
state-of-the-art results on certain video processing tasks, e.g. action recognition. Also, current
spatio-temporal representation learning architectures are not able to encode all the information
present videos, and there are very few approaches that allow researchers to analyse which are
the best architectures for each circumstance. Our results help better comprehend how each of
these architectures learns their representations and where research needs to focus to improve
on the current methods and offer new tools for this purpose. Furthermore, we present a novel
application for generative networks that allow for their use on knowledge transfer, improving
representation learning for new models by guiding the learning procedure and providing a better
initial condition.

7.1 Future Work

To make further progress in spatio-temporal representation learning, we believe that
different ways of including the analysis of temporal information throughout the network need
to be proposed since convolutions limit the analysis to a fixed-size window constrained by the

7.1. Future Work 159

computational cost and do not adapt well to changes in temporal information. Also, methods
that provide a better understanding of how spatio-temporal representation learning architectures
encode information and their advantages and drawbacks should be explored as they would
help guide advances in the area. Lastly, further investigation on the use of generative networks
for knowledge transfer should be conducted since the results presented here show promise.
These results would largely benefit from more stable GAN training procedures and architectures,
and better evaluation assessment techniques for generative networks that do not rely on visual
information.

161

BIBLIOGRAPHY

AMODEI, D.; ANANTHANARAYANAN, S.; ANUBHAI, R.; BAI, J.; BATTENBERG, E.;
CASE, C.; CASPER, J.; CATANZARO, B.; CHENG, Q.; CHEN, G. et al. Deep speech 2: End-
to-end speech recognition in english and mandarin. In: International Conference on Machine
Learning. [S.l.: s.n.], 2016. p. 173–182. Citation on page 58.

ARJOVSKY, M.; CHINTALA, S.; BOTTOU, L. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017. Citation on page 49.

BACCOUCHE, M.; MAMALET, F.; WOLF, C.; GARCIA, C.; BASKURT, A. Sequential deep
learning for human action recognition. In: SPRINGER. International Workshop on Human
Behavior Understanding. [S.l.], 2011. p. 29–39. Citation on page 60.

BALLAS, N.; YAO, L.; PAL, C.; COURVILLE, A. Delving deeper into convolutional net-
works for learning video representations. In: Proceedings of the International Conference on
Learning Representations. [S.l.: s.n.], 2015. Citation on page 61.

BAY, H.; TUYTELAARS, T.; GOOL, L. V. Surf: speeded up robust features. In: Computer vi-
sion – ECCV 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 404–417. Citation
on page 54.

BENGIO, Y. Learning deep architectures for AI. Foundations and Trends in Machine Learn-
ing, v. 2, n. 1, p. 1–127, 2009. Also published as a book. Now Publishers, 2009. Citation on
page 40.

BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A review and new
perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, IEEE, v. 35,
n. 8, p. 1798–1828, 2013. Citations on pages 30, 35, 36, 51, and 57.

BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term dependencies with gradient
descent is difficult. Neural Networks, IEEE Transactions on, IEEE, v. 5, n. 2, p. 157–166,
1994. Citation on page 45.

BERTHELOT, D.; SCHUMM, T.; METZ, L. Began: Boundary equilibrium generative adversarial
networks. arXiv preprint arXiv:1703.10717, 2017. Citations on pages 49 and 149.

BISHOP, C. M. Pattern recognition and machine learning. [S.l.]: Springer, 2006. Citation
on page 36.

BOSER, B. E.; GUYON, I. M.; VAPNIK, V. N. A training algorithm for optimal margin
classifiers. In: ACM. Proceedings of the fifth annual workshop on Computational learning
theory. [S.l.], 1992. p. 144–152. Citation on page 94.

CARREIRA, J.; ZISSERMAN, A. Quo vadis, action recognition? a new model and the kinetics
dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]:
IEEE, 2017. p. 4724–4733. Citations on pages 32 and 64.

162 Bibliography

CHATFIELD, K.; LEMPITSKY, V. S.; VEDALDI, A.; ZISSERMAN, A. The devil is in the
details: an evaluation of recent feature encoding methods. In: Proceedings of the British
Machine Vision Conference. [S.l.]: BMVA Press, 2011. p. 76.1–76.12. Citation on page 55.

CHEN, X.; DUAN, Y.; HOUTHOOFT, R.; SCHULMAN, J.; SUTSKEVER, I.; ABBEEL, P.
Infogan: Interpretable representation learning by information maximizing generative adversarial
nets. In: Advances in Neural Information Processing Systems. [S.l.: s.n.], 2016. p. 2172–2180.
Citation on page 149.

CHENG, X.; DALE, C.; LIU, J. Statistics and social network of youtube videos. In: IEEE.
Quality of Service, 2008. IWQoS 2008. 16th International Workshop on. [S.l.], 2008. p.
229–238. Citation on page 30.

DALAL, N.; TRIGGS, B. Histograms of oriented gradients for human detection. In: IEEE.
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on. [S.l.], 2005. v. 1, p. 886–893. Citations on pages 30, 55, and 142.

DALAL, N.; TRIGGS, B.; SCHMID, C. Human detection using oriented histograms of flow
and appearance. In: Computer Vision – ECCV 2006. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006. p. 428–441. Citations on pages 52, 54, 56, and 57.

DENG, J.; DONG, W.; SOCHER, R.; LI, L.-J.; LI, K.; FEI-FEI, L. Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2009. Citations on pages 63 and 68.

DENG, L.; YU, D. Deep Learning: Methods and Applications. [S.l.], 2014. Citation on page
40.

DERPANIS, K. G.; LECCE, M.; DANIILIDIS, K.; WILDES, R. P. Dynamic scene understanding:
The role of orientation features in space and time in scene classification. In: IEEE. Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. [S.l.], 2012. p. 1306–
1313. Citations on pages 96 and 99.

DRUZHKOV, P.; KUSTIKOVA, V. A survey of deep learning methods and software tools for
image classification and object detection. Pattern Recognition and Image Analysis, Springer,
v. 26, n. 1, p. 9–15, 2016. Citation on page 58.

EGHBAL-ZADEH, H.; WIDMER, G. Likelihood estimation for generative adversarial networks.
arXiv preprint arXiv:1707.07530, 2017. Citation on page 147.

FARNEBÄCK, G. Two-frame motion estimation based on polynomial expansion. In: Image
Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. p. 363–370. Citation on page
53.

FEICHTENHOFER, C.; PINZ, A.; WILDES, R. Spatiotemporal residual networks for video
action recognition. In: Advances in neural information processing systems. [S.l.: s.n.], 2016.
p. 3468–3476. Citation on page 63.

FEICHTENHOFER, C.; PINZ, A.; ZISSERMAN, A. Convolutional two-stream network fusion
for video action recognition. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition. [S.l.]: IEEE, 2016. p. 1933–1941. Citation on page 63.

Bibliography 163

FISCHLER, M. A.; BOLLES, R. C. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the ACM,
ACM, New York, NY, USA, v. 24, n. 6, p. 381–395, 1981. Citation on page 54.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.
<http://www.deeplearningbook.org>. Citations on pages 13, 30, 35, 39, 40, 41, 42, 43, 44, 45,
46, 47, and 57.

GOODFELLOW, I.; POUGET-ABADIE, J.; MIRZA, M.; XU, B.; WARDE-FARLEY, D.;
OZAIR, S.; COURVILLE, A.; BENGIO, Y. Generative adversarial nets. In: Advances in neural
information processing systems. [S.l.: s.n.], 2014. p. 2672–2680. Citation on page 47.

GRETTON, A.; BORGWARDT, K. M.; RASCH, M. J.; SCHÖLKOPF, B.; SMOLA, A. A
kernel two-sample test. Journal of Machine Learning Research, v. 13, n. Mar, p. 723–773,
2012. Citation on page 144.

GULRAJANI, I.; AHMED, F.; ARJOVSKY, M.; DUMOULIN, V.; COURVILLE, A. C. Im-
proved training of wasserstein gans. In: Advances in Neural Information Processing Systems.
[S.l.: s.n.], 2017. p. 5769–5779. Citation on page 49.

HARRIS, C.; STEPHENS, M. A combined corner and edge detector. In: Alvey vision confer-
ence. [S.l.: s.n.], 1988. v. 15, n. 50, p. 10–5244. Citation on page 52.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. [S.l.:
s.n.], 2016. p. 770–778. Citations on pages 139 and 144.

HENSELER, J. Back propagation. In: Artificial neural networks. [S.l.]: Springer, 1995. p.
37–66. Citations on pages 37 and 39.

HERATH, S.; HARANDI, M.; PORIKLI, F. Going deeper into action recognition: A survey.
Image and vision computing, Elsevier, v. 60, p. 4–21, 2017. Citation on page 51.

HINTON, G.; DENG, L.; YU, D.; DAHL, G. E.; MOHAMED, A.-r.; JAITLY, N.; SENIOR, A.;
VANHOUCKE, V.; NGUYEN, P.; SAINATH, T. N. et al. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. Signal Processing
Magazine, IEEE, IEEE, v. 29, n. 6, p. 82–97, 2012. Citation on page 30.

HINTON, G.; OSINDERO, S.; TEH, Y.-W. A fast learning algorithm for deep belief nets. Neural
computation, MIT Press, v. 18, n. 7, p. 1527–1554, 2006. Citation on page 40.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural computation, MIT
Press, v. 9, n. 8, p. 1735–1780, 1997. Citation on page 44.

HUBEL, D. H.; WIESEL, T. N. Receptive fields and functional architecture of monkey striate
cortex. The Journal of physiology, Wiley Online Library, v. 195, n. 1, p. 215–243, 1968.
Citation on page 41.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift. In: Proceedings of the 32Nd International Conference on
International Conference on Machine Learning - Volume 37. [S.l.: s.n.], 2015. (ICML’15),
p. 448–456. Citation on page 48.

http://www.deeplearningbook.org

164 Bibliography

JI, S.; XU, W.; YANG, M.; YU, K. 3d convolutional neural networks for human action recog-
nition. IEEE transactions on pattern analysis and machine intelligence, IEEE, v. 35, n. 1, p.
221–231, 2013. Citation on page 60.

JOLLIFFE, I. Principal component analysis. New York, NY, USA: Springer-Verlag New York,
2002. Citation on page 55.

KARPATHY, A. Blog, The Unreasonable Effectiveness of Recurrent Neural Networks. 2015.
<http://karpathy.github.io/2015/05/21/rnn-effectiveness/>. Citation on page 43.

KARPATHY, A.; JOHNSON, J.; LI, F.-F. Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078, 2015. Citations on pages 44 and 45.

KARPATHY, A.; TODERICI, G.; SHETTY, S.; LEUNG, T.; SUKTHANKAR, R.; FEI-FEI, L.
Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference
on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2014. p. 1725–1732. Citations
on pages 30, 52, 58, 59, 60, and 97.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. Proceedings of the 3rd
International Conference on Learning Representations (ICLR), 2014. Citation on page 70.

KLASER, A.; MARSZAŁEK, M.; SCHMID, C. A spatio-temporal descriptor based on 3d-
gradients. In: BRITISH MACHINE VISION ASSOCIATION. BMVC 2008 – 19th British
Machine Vision Conference. [S.l.], 2008. p. 275–1. Citations on pages 30 and 52.

KRIESEL, D. A brief introduction to neural networks. Retrieved August, v. 15, p. 2011, 2007.
Citation on page 37.

KRIZHEVSKY, A.; HINTON, G. Learning multiple layers of features from tiny images. Mas-
ter’s thesis, Department of Computer Science, University of Toronto, Citeseer, 2009. Cita-
tion on page 143.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep convo-
lutional neural networks. In: PEREIRA, F.; BURGES, C. J. C.; BOTTOU, L.; WEINBERGER,
K. Q. (Ed.). Advances in Neural Information Processing Systems 25. [S.l.]: Curran Asso-
ciates, Inc., 2012. p. 1097–1105. Citation on page 30.

KRÖSE, B.; KROSE, B.; SMAGT, P. van der; SMAGT, P. An introduction to neural networks.
1996. Citation on page 37.

LAKE, B. M.; SALAKHUTDINOV, R.; TENENBAUM, J. B. Human-level concept learning
through probabilistic program induction. Science, American Association for the Advancement
of Science, v. 350, n. 6266, p. 1332–1338, 2015. Citation on page 142.

LÄNGKVIST, M.; KARLSSON, L.; LOUTFI, A. A review of unsupervised feature learning and
deep learning for time-series modeling. Pattern Recognition Letters, Elsevier, v. 42, p. 11–24,
2014. Citations on pages 30, 58, and 96.

LAPTEV; LINDEBERG. Space-time interest points. In: Proceedings Ninth IEEE Interna-
tional Conference on Computer Vision. [S.l.: s.n.], 2003. p. 432–439 vol.1. Citation on page
52.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Bibliography 165

LARSEN, A. B. L.; SØNDERBY, S. K.; LAROCHELLE, H.; WINTHER, O. Autoencoding be-
yond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300, 2015. Citation
on page 149.

LAZEBNIK, S.; SCHMID, C.; PONCE, J. Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2006. p. 2169–2178. Citation on
page 55.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Nature Publishing Group,
v. 521, n. 7553, p. 436–444, 2015. Citations on pages 29, 30, 40, and 57.

LECUN, Y.; KAVUKCUOGLU, K.; FARABET, C. Convolutional networks and applications
in vision. In: IEEE. Proceedings of 2010 IEEE International Symposium on Circuits and
Systems. [S.l.], 2010. p. 253–256. Citation on page 42.

LITJENS, G.; KOOI, T.; BEJNORDI, B. E.; SETIO, A. A. A.; CIOMPI, F.; GHAFOORIAN,
M.; LAAK, J. A. V. D.; GINNEKEN, B. V.; SÁNCHEZ, C. I. A survey on deep learning in
medical image analysis. Medical image analysis, Elsevier, v. 42, p. 60–88, 2017. Citation on
page 58.

LOWE, D. G. Object recognition from local scale-invariant features. In: IEEE. Computer vision,
1999. The proceedings of the seventh IEEE international conference on. [S.l.], 1999. v. 2, p.
1150–1157. Citation on page 30.

. Distinctive image features from scale-invariant keypoints. International journal of com-
puter vision, Springer, v. 60, n. 2, p. 91–110, 2004. Citations on pages 52, 56, and 57.

MAAS, A. L.; HANNUN, A. Y.; NG, A. Y. Rectifier nonlinearities improve neural network
acoustic models. In: Proc. icml. [S.l.: s.n.], 2013. v. 30, n. 1, p. 3. Citation on page 49.

MAATEN, L. Van der; HINTON, G. Visualizing high-dimensional data using t-sne. Journal of
Machine Learning Research, v. 9, n. 2579-2605, p. 85, 2008. Citation on page 69.

MACQUEEN, J. Some methods for classification and analysis of multivariate observations.
In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability.
Berkeley, CA, USA: University of California Press, 1967. v. 1, n. 14, p. 281–297. Citation on
page 55.

MARSZAŁEK, M.; LAPTEV, I.; SCHMID, C. Actions in context. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2009. Citations on pages 54, 96,
and 111.

MESSING, R.; PAL, C.; KAUTZ, H. Activity recognition using the velocity histories of tracked
keypoints. In: 2009 IEEE 12th International Conference on Computer Vision. [S.l.]: IEEE,
2009. p. 104–111. Citation on page 52.

MINSKY, M.; SEYMOUR, P. Perceptrons. MIT press, 1969. Citation on page 38.

MNIH, V.; KAVUKCUOGLU, K.; SILVER, D.; RUSU, A. A.; VENESS, J.; BELLEMARE,
M. G.; GRAVES, A.; RIEDMILLER, M.; FIDJELAND, A. K.; OSTROVSKI, G.; PETERSEN,
S.; BEATTIE, C.; SADIK, A.; ANTONOGLOU, I.; KING, H.; KUMARAN, D.; WIERSTRA,
D.; LEGG, S.; HASSABIS, D. Human-level control through deep reinforcement learning.

166 Bibliography

Nature, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights
Reserved., v. 518, n. 7540, p. 529–533, 2015. ISSN 0028-0836. Citation on page 30.

MONTES, A.; SALVADOR, A.; PASCUAL, S.; NIETO, X. Giro-i. Temporal activity detection
in untrimmed videos with recurrent neural networks. In: 1st NIPS Workshop on Large Scale
Computer Vision Systems. [S.l.: s.n.], 2016. Citations on pages 58 and 62.

MUNKRES, J. Algorithms for the assignment and transportation problems. Journal of the
society for industrial and applied mathematics, SIAM, v. 5, n. 1, p. 32–38, 1957. Citation
on page 154.

NAIR, V.; HINTON, G. E. Rectified linear units improve restricted boltzmann machines. In: Pro-
ceedings of the 27th International Conference on International Conference on Machine
Learning. [S.l.: s.n.], 2010. (ICML’10), p. 807–814. ISBN 978-1-60558-907-7. Citation on
page 49.

NG, J. Y.-H.; HAUSKNECHT, M.; VIJAYANARASIMHAN, S.; VINYALS, O.; MONGA, R.;
TODERICI, G. Beyond short snippets: Deep networks for video classification. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015. p. 4694–4702.
Citations on pages 31, 58, 59, 61, and 63.

NIELSEN, M. A. Neural networks and deep learning. Determination Press, 2015. Accessed:
2015-03-13. Available: <http://neuralnetworksanddeeplearning.com/>. Citation on page 40.

NOWAK, E.; JURIE, F.; TRIGGS, B. Sampling strategies for bag-of-features image classification.
In: Computer Vision – ECCV 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p.
490–503. Citation on page 55.

ONEATA, D.; VERBEEK, J.; SCHMID, C. Action and event recognition with fisher vectors on
a compact feature set. In: 2013 IEEE International Conference on Computer Vision. [S.l.]:
IEEE, 2013. p. 1817–1824. Citations on pages 52, 55, 92, 93, 129, and 130.

PASCANU, R.; MIKOLOV, T.; BENGIO, Y. On the difficulty of training recurrent neural
networks. arXiv preprint arXiv:1211.5063, 2012. Citation on page 45.

POPOOLA, O. P.; WANG, K. Video-based abnormal human behavior recognition—a review.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
IEEE, v. 42, n. 6, p. 865–878, 2012. Citation on page 51.

PROTASOV, S.; KHAN, A. M.; SOZYKIN, K.; AHMAD, M. Using deep features for video
scene detection and annotation. Signal, Image and Video Processing, Springer, p. 1–9, 2018.
Citation on page 51.

QIU, Z.; YAO, T.; MEI, T. Learning spatio-temporal representation with pseudo-3d residual
networks. In: 2017 IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2017.
p. 5534–5542. Citations on pages 13, 29, 60, and 61.

RADFORD, A.; METZ, L.; CHINTALA, S. Unsupervised representation learning with deep con-
volutional generative adversarial networks. In: Proceedings of the International Conference
on Learning Representations (ICLR). [S.l.: s.n.], 2016. Citation on page 48.

RIFKIN, R.; KLAUTAU, A. In defense of one-vs-all classification. The Journal of Machine
Learning Research, JMLR. org, v. 5, p. 101–141, 2004. Citation on page 94.

http://neuralnetworksanddeeplearning.com/

Bibliography 167

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, American Psychological Association, v. 65, n. 6, p. 386,
1958. Citation on page 37.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by back-
propagating errors. Cognitive modeling, v. 5, n. 3, p. 1, 1988. Citations on pages 39 and 40.

SABOKROU, M.; FAYYAZ, M.; FATHY, M.; MOAYED, Z.; KLETTE, R. Deep-anomaly: Fully
convolutional neural network for fast anomaly detection in crowded scenes. Computer Vision
and Image Understanding, Elsevier, 2018. Citation on page 51.

SÁNCHEZ, J.; PERRONNIN, F.; MENSINK, T.; VERBEEK, J. Image classification with the
fisher vector: theory and practice. International journal of computer vision, Springer, v. 105,
n. 3, p. 222–245, 2013. Citations on pages 55 and 92.

SANDE, K. V. D.; GEVERS, T.; SNOEK, C. Evaluating color descriptors for object and scene
recognition. IEEE transactions on pattern analysis and machine intelligence, IEEE, v. 32,
n. 9, p. 1582–1596, 2010. Citation on page 51.

SANDLER, M.; HOWARD, A.; ZHU, M.; ZHMOGINOV, A.; CHEN, L.-C. Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. [S.l.: s.n.], 2018. p. 4510–4520. Citations on pages 13, 68,
69, and 77.

SCHULDT, C.; LAPTEV, I.; CAPUTO, B. Recognizing human actions: a local svm approach.
In: IEEE. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International
Conference on. [S.l.], 2004. v. 3, p. 32–36. Citations on pages 96, 102, 104, 105, 106, 108,
and 109.

SCOVANNER, P.; ALI, S.; SHAH, M. A 3-dimensional sift descriptor and its application
to action recognition. In: ACM. Proceedings of the 15th ACM international conference on
Multimedia. [S.l.], 2007. p. 357–360. Citations on pages 30 and 52.

SHI, J.; TOMASI, C. Good features to track. In: 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition. [S.l.]: IEEE, 1994. p. 593–600. Citation on page
54.

SHOU, Z.; WANG, D.; CHANG, S.-F. Temporal action localization in untrimmed videos via
multi-stage cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2016. p. 1049–1058. Citations on pages 29 and 51.

SHROFF, N.; TURAGA, P.; CHELLAPPA, R. Moving vistas: Exploiting motion for describing
scenes. In: IEEE. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on. [S.l.], 2010. p. 1911–1918. Citations on pages 98 and 99.

SIMONYAN, K.; ZISSERMAN, A. Two-stream convolutional networks for action recognition in
videos. In: Advances in Neural Information Processing Systems 27. Cambridge, MA, USA:
MIT Press, 2014. p. 568–576. Citations on pages 62 and 63.

SIVIC, J.; ZISSERMAN, A. Video google: A text retrieval approach to object matching in
videos. In: IEEE 9th International Conference on Computer Vision. [S.l.]: IEEE, 2003. p.
1470–1477. Citation on page 55.

168 Bibliography

SPRINGENBERG, J. T.; DOSOVITSKIY, A.; BROX, T.; RIEDMILLER, M. Striving for simplic-
ity: The all convolutional net. In: arXiv:1412.6806, also appeared at ICLR 2015 Workshop
Track. [S.l.: s.n.], 2015. Citation on page 48.

SRIVASTAVA, A.; VALKOZ, L.; RUSSELL, C.; GUTMANN, M. U.; SUTTON, C. Veegan:
Reducing mode collapse in gans using implicit variational learning. In: Advances in Neural
Information Processing Systems. [S.l.: s.n.], 2017. p. 3310–3320. Citation on page 149.

SRIVASTAVA, N.; MANSIMOV, E.; SALAKHUDINOV, R. Unsupervised learning of video rep-
resentations using lstms. In: Proceedings of the 32nd International Conference on Machine
Learning. [S.l.]: PMLR, 2015. p. 843–852. Citations on pages 13, 31, 61, 62, and 68.

SUN, J.; WU, X.; YAN, S.; CHEONG, L.-F.; CHUA, T.-S.; LI, J. Hierarchical spatio-temporal
context modeling for action recognition. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. [S.l.]: IEEE, 2009. p. 2004–2011. Citation on page 52.

SUTSKEVER, I.; MARTENS, J.; HINTON, G. E. Generating text with recurrent neural networks.
In: Proceedings of the 28th International Conference on Machine Learning (ICML-11).
[S.l.: s.n.], 2011. p. 1017–1024. Citation on page 44.

SZEGEDY, C.; LIU, W.; JIA, Y.; SERMANET, P.; REED, S.; ANGUELOV, D.; ERHAN,
D.; VANHOUCKE, V.; RABINOVICH, A. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014. Citation on page 30.

SZELISKI, R. Image alignment and stitching: a tutorial. Foundations and Trends R○ in Com-
puter Graphics and Vision, Now Publishers Inc., v. 2, n. 1, p. 1–104, 2006. Citation on page
54.

TRAN, D.; BOURDEV, L.; FERGUS, R.; TORRESANI, L.; PALURI, M. Learning spatiotem-
poral features with 3d convolutional networks. In: 2015 IEEE International Conference on
Computer Vision. [S.l.]: IEEE, 2015. p. 4489–4497. Citations on pages 31, 60, 68, 92, and 93.

TRAN, D.; WANG, H.; TORRESANI, L.; RAY, J.; LECUN, Y.; PALURI, M. A closer look at
spatiotemporal convolutions for action recognition. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition. [S.l.: s.n.], 2018. p. 6450–6459. Citations on pages 29, 58,
60, 61, and 68.

VAROL, G.; LAPTEV, I.; SCHMID, C. Long-term temporal convolutions for action recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, v. 40, n. 6, p. 1510–
1517, 2018. Citation on page 60.

WANG, H.; KLÄSER, A.; SCHMID, C.; LIU, C.-L. Action recognition by dense trajectories. In:
2011 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2011. p.
3169–3176. Citations on pages 13, 52, 53, and 54.

. Dense trajectories and motion boundary descriptors for action recognition. International
journal of computer vision, Springer, v. 103, n. 1, p. 60–79, 2013. Citations on pages 57
and 129.

WANG, H.; SCHMID, C. Action recognition with improved trajectories. In: 2013 IEEE Inter-
national Conference on Computer Vision. [S.l.]: IEEE, 2013. p. 3551–3558. Citations on
pages 30, 52, and 54.

Bibliography 169

WANG, H.; ULLAH, M. M.; KLASER, A.; LAPTEV, I.; SCHMID, C. Evaluation of local
spatio-temporal features for action recognition. In: Proceedings of the British Machine Vision
Conference. [S.l.]: BMVA Press, 2009. p. 124.1–124.11. Citation on page 52.

WANG, L.; XIONG, Y.; WANG, Z.; QIAO, Y.; LIN, D.; TANG, X.; GOOL, L. V. Temporal
segment networks: Towards good practices for deep action recognition. In: Computer Vision –
ECCV 2016. Cham: Springer International Publishing, 2016. p. 20–36. Citation on page 63.

WANG, Q. X. A survey on bayesian learning model for human action recognition. In: IOP
PUBLISHING. Journal of Physics: Conference Series. [S.l.], 2018. v. 1087, n. 6, p. 062011.
Citation on page 51.

WEINZAEPFEL, P.; HARCHAOUI, Z.; SCHMID, C. Learning to track for spatio-temporal ac-
tion localization. In: Proceedings of the IEEE international conference on computer vision.
[S.l.: s.n.], 2015. p. 3164–3172. Citation on page 51.

WERBOS, P. Beyond regression: New tools for prediction and analysis in the behavioral sciences.
1974. Citations on pages 39 and 43.

WIDROW, B.; HOFF, M. E. et al. Adaptive switching circuits. Defense Technical Information
Center, 1960. Citation on page 37.

XU, B.; WANG, N.; CHEN, T.; LI, M. Empirical evaluation of rectified activations in convolu-
tional network. arXiv preprint arXiv:1505.00853, 2015. Citation on page 49.

XU, D.; YAN, Y.; RICCI, E.; SEBE, N. Detecting anomalous events in videos by learning
deep representations of appearance and motion. Computer Vision and Image Understanding,
Elsevier, v. 156, p. 117–127, 2017. Citation on page 29.

YOUNG, T.; HAZARIKA, D.; PORIA, S.; CAMBRIA, E. Recent trends in deep learning based
natural language processing. IEEE Computational Intelligence Magazine, IEEE, v. 13, n. 3,
p. 55–75, 2018. Citation on page 58.

ZHAO, J.; MATHIEU, M.; LECUN, Y. Energy-based generative adversarial network. In: Pro-
ceedings of the International Conference on Learning Representations (ICLR). [S.l.: s.n.],
2016. Citation on page 49.

ZHU, W.; HU, J.; SUN, G.; CAO, X.; QIAO, Y. A key volume mining deep framework for action
recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]:
IEEE, 2016. p. 1991–1999. Citation on page 64.

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Hypothesis
	Publications
	Accepted or published papers (descending chronological order)
	Papers in writing or review stage

	Document organisation

	Fundamental concepts
	Opening remarks
	Representation learning
	Artificial neural networks
	Processing unit
	Feedforward networks

	Deep learning
	Convolutional networks
	Recurrent neural networks
	Long Short-Term Memory (LSTM)

	Autoencoders
	Generative adversarial networks
	Deep Convolutional GAN (DCGAN)
	Wasserstein GAN (WGAN)
	Boundary equilibrium GAN (BEGAN)

	Concluding remarks

	Spatio-temporal representation learning
	Opening remarks
	Hand-crafted spatio-temporal features
	Dense trajectories
	Histogram of Oriented Gradients (HOG)
	Histogram of Optical Flow (HOF)
	Motion Boundary Histogram (MBH)

	Spatio-temporal representation learning
	Temporal information fusion
	Fusion by concatenation
	Temporal pooling
	Temporal convolution
	Recurrent network

	Two-stream networks
	Video clip selection

	Concluding remarks

	Spatio-temporal representation analysis
	Opening remarks
	Experimental setup
	Datasets
	BouncingMNIST

	Results
	Intra-dataset analysis
	C3D
	R3D
	R21D
	CNN+LSTM
	CNN+LSTM (2)

	Cross-dataset analysis
	Velocity variation analysis

	Concluding remarks

	Representation generalisation analysis
	Opening remarks
	Experimental setup
	Datasets
	Action recognition
	Hollywood2 Actions
	KTH-Action
	Sports-1M

	Dynamic scene recognition
	Maryland Dynamic Scenes (UMD)
	YUPENN Dynamic Scenes

	Results
	KTH-Actions
	IDT-FV
	C3D
	Classification of 16-frame blocks
	Combination by voting
	Combination by k-means quantisation
	Combination by average
	Combination by statistical measures

	Hollywood2 Actions
	IDT-FV
	C3D
	Combination by k-means quantisation
	Combination by average
	Combination by statistical measures

	Maryland Dynamic Scenes
	IDT-FV
	C3D
	Classification of 16-frame blocks
	Combination by voting
	Combination by k-means quantisation
	Combination by average
	Combination by statistical measures

	YUPENN Dynamic Scenes
	IDT-FV
	C3D
	Classification of 16-frame blocks
	Combination by voting
	Combination by k-means quantisation
	Combination by average
	Combination by statistical measures

	Concluding remarks

	Generative adversarial networks for knowledge transfer
	Opening remarks
	Experimental setup
	Datasets
	Synthetic dataset
	Omniglot
	CIFAR

	Experiments
	Understanding GANs
	Using GANs for regularisation
	Regularising Linear SVM for character classification
	Regularising residual networks for the CIFAR dataset
	Initialisation using generated samples

	Concluding remarks

	Conclusion
	Future Work

	Bibliography

